

Standard Features:

- All Welded Thermobank
- · Liquid Subcooling Circuit
- Manual Pumpdown Switch
- Crankcase Heater(s)
- · Liquid Line Filter-Drier
- Semi-Hermetic Compressor(s)
- Moisture Indicating Sightglass
- Electronic Room Thermostat (Loose)
- Environmentally Safe Refrigerants
- Suction Solenoid Valve
- Floating Head Pressure
- Sub-Circuit Fusing
- Replaceable Core Liquid Line Filter-Drier
- Replaceable Core Suction Line Filter
- · Low Noise / Energy Efficient 850 RPM Motors

- · Bank Water Level Gauge
- · Thermobank Drain Valve
- Adjustable Fan Cycling
- · Copper Tube-Aluminum Fin Coils
- Hi-Lo Pressure Switch
- Pressure Relief Valve
- Electronic Oil Pressure Safety Control
- · Weatherproof Outdoor Housing
- Manual Compressor Switch
- Receiver With Service Valves
- Evaporator(s)
- · Complete Defrost Controls
- X-Braided Pressure Control Hose
- Suction & Discharge Vibration Elim.
- Control Circuit Transformer 460V & 575V

optional features on following page

SINCE 1914 – with over 100 years of continuous improvement in heat transfer technology, KRAMER presents models CTT refrigeration units.

Options:

- Oil Separator
- Non-Fused Disconnect
- · Phase Loss Monitor
- · Pressure Relief Valve
- Oversize Condenser
- · Oversize Liquid Receiver
- Suction Accumulator
- Anti-Short Cycle Timer
- Single Point Alarm
- · High, Low, And Oil Pressure Gauges
- Copper Fin Coil
- · Coated Fin Coil

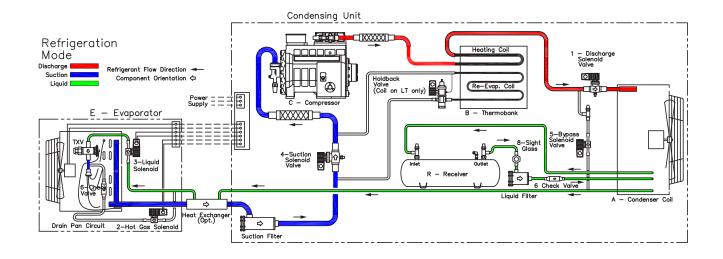
THERMOBANK is available for all commercial and industrial applications with temperatures ranging from -30°F to +35°F. This factory packaged hot gas defrost system employs a re-evaporator, ensuring a highly efficient defrost cycle, but requires no suction accumulators, reversing valves or hot gas line from condensing unit to evaporator.

THERMOBANK provides continuous energy savings as the outdoor temperature drops; BTU per Hour increases and compressor watts decrease resulting in more cooling and less energy usage for each operating hour.

Less equipment is needed with **THERMOBANK** because it does more refrigeration in 24 hours than other packaged systems. With it's extremely fast defrost period (typically 5 to 10 minutes), **THERMOBANK** is refrigerating while others are still defrosting. With the lowest possible, head pressure there is a marked increase in BTU per Hour capacity.

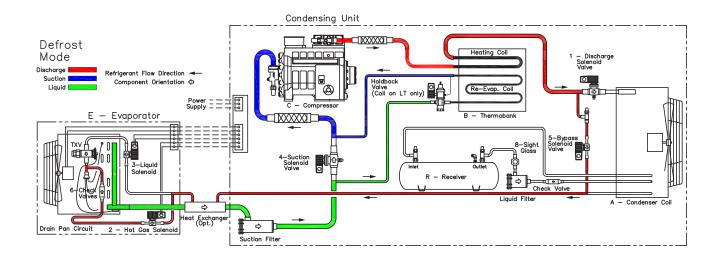
Models CTT

Low and Medium Temperature Models


Nomenclature:

 CTT
 4
 1200
 L
 44
 E

 I
 II
 III
 IV
 V
 VI


NOMENCLATURE

I	— Series DesignatorCTT - Thermobank	IV —	Temperature Range L - Low M - Medium
II	Compressor Code2 - Copeland Discus4 - Bitzer	V —	Refrigerant Type 44 - R404A or R507 47 - R407C
III	— Nominal HP EX: 1200 - 12 HP	VI —	Voltage Code G - 460/3/60 J - 575/3/60 V - 208/3/60 W - 230/3/60

SCHEMATIC LEGEND

A = CONDENSER 1 = DISCHARGE SOLENOID
B = THERMOBANK 2 = HOT GAS SOLENOID
C = COMPRESSOR 3 = LIQUID SOLENOID
E = EVAPORATOR 4 = SUCTION SOLENOID
R = RECEIVER 5 = BY-PASS VALVE
X = EXPANSION VALVE 6 = CHECK VALVE
8 = SIGHT GLASS

HOW THERMOBANK WORKS

Every refrigeration system discharges the heat picked up from the evaporator and the compressor. This waste heat is normally rejected by the condenser. With Thermobank, the compressor (C) discharge passes through a heating loop that is submerged in a water filled bank (B), and then on through the condenser (A). The bank stores sufficient heat to fully re-evaporate all the liquid resulting from the defrost of the Evaporator (E).

THE REFRIGERATION CYCLE

The compressor discharge refrigerant, after heating the bank water, flows to the air cooled condenser and then to the receiver (R). From the receiver the liquid refrigerant flows through a sub-cooling circuit in the condenser and on to the expansion valve (X), and the evaporator (E). The refrigerant returns to the compressor as in any standard system.

To prevent excessive super-heating of the refrigerant vapor returning to the compressor and to maintain the water temperature in the bank, the refrigerant flow bypasses the bank through the suction line solenoid (4) during the refrigeration cycle. This normally closed suction line solenoid is generously sized for minimum pressure drop, providing an extra margin of safety. On low temperature systems, an electronically operated holdback valve (H) ensures that no refrigerant flows through the bank during the refrigeration cycle.

THE DEFROST CYCLE

A time clock automatically puts the Thermobank system into a defrost cycle and initiates the following: Discharge solenoid Valve (1) closes; the evaporator (E) fans stop; hot gas solenoid valve (2) opens; liquid solenoid valve (3) closes; suction solenoid valve (4) closes.

The compressor discharge gas goes directly into the liquid line because by-pass solenoid valve (5) is open when discharge solenoid (1) is closed. All the warm liquid refrigerant in the liquid line flows through the evaporator. This liquid refrigerant insures a rapid defrost and charges the defrost circuit. Additional hot gas condenses in the evaporator providing an unusually rapid defrost at all ambient conditions.

With the suction solenoid (4) closed, the liquid refrigerant flows through the holdback valve (H) which controls the rate of refrigerant flow and the pressure in the bank. The bank becomes an evaporator and absorbs the stored heat. The Thermobank system utilizes a high pressure safety control which functions to momentarily open the discharge line solenoid (1) if discharge pressures rise to a high level.

The defrost cycle is terminated by a pressure switch that senses evaporator pressures and starts the post-defrost period. During post-defrost the discharge solenoid (1) is open; by-pass solenoid valve (5) is closed and hot gas solenoid (2) is closed. Suction solenoid (4) and liquid solenoid (3) remain closed. At the end of the pressure terminated post-defrost period, both suction solenoid (4) and liquid solenoid (3) open and the evaporator fan motors start. During defrost, the hot gas by-passes the receiver so after defrost the receiver contains ample liquid refrigerant to begin refrigerating immediately and prevent compressor short cycling. The system then returns to the normal refrigeration cycle.

FASTEST DEFROST

THERMOBANK has a typical defrost cycle duration of 5 to 10 minutes. The defrost is uniform throughout the coil, and minimizes the heat and vapor added to the room during defrost. The defrosting evaporator receives the full heat of rejection of the refrigerant. This is the sum of the compressor heat while operating at maximum suction pressure during the defrost cycle and the heat extracted from the bank. There is always an adequate supply of refrigerant for defrosting.

EXTRA COMPRESSOR PROTECTION

Many factors are incorporated in Thermobank to protect the compressor and insure long life. All units utilize a pump-down cycle to prevent refrigerant migration to the compressor during the off-cycle. During the defrost cycle the bank is protected against flood-back. The holdback valve protects against overloading the compressor motor by regulating the inlet pressure to the compressor. The reduced refrigerant charge is additional protection for the compressor.

BANK DESIGN

The bank has a welded hermetic design to insure a long, leak free life. The heavy gauge steel shell has a bulls-eye water level gauge. Checking the water level is quick and easy. The shell is insulated with closed cell foam to maintain proper water temperature at any ambient condition and provide optimum system performance. The internal heat transfer loops are die formed from extra heavy wall, seamless copper tubing. The bank contains a thermostat controlled immersion heater for stabilizing water temperature and automatic freeze protection. The heavy duty welded design makes the bank durable, reliable, safe and service free. A drain connection is also provided for seasonal shutdown when applicable.

EXTRA LARGE CONDENSERS

Ratings for ambient temperatures to 105°F are given for all Thermobank systems. Special systems are available for ambient design temperatures above 110°F. All condensers have a maximum fin spacing of 12 FPI to help prevent coil fouling and increase the time between coil cleanings. Generous coil surface keeps head pressures lower, saves energy, and extends the life of the equipment. An integral subcooling circuit is standard to prevent flash gas in liquid risers and increase system efficiency. Fan cycle controls allow some adjustability to the head pressure and will minimize fan motor energy consumption in low ambient's. An optional pressure control may be provided on the header end fan to assure sufficient head pressure is available for a good cold ambient re-start.

OPERATING HOURS

The length of defrost must be taken into account when selecting equipment. Thermobank's defrost cycle is very rapid, typically 5 to 10 minutes, and for this reason the equipment can be selected on the basis of 22 hours per day operation. Other systems require 30 to 40 minutes for a complete defrost and the general practice is to select this equipment on eighteen hours per day operation. For the same job, Thermobank equipment requirement is 10% less than others. Thermobank will be refrigerating while others are still defrosting.

AVERAGE OUTDOOR TEMPERATURE

The Average Outdoor Temperature is considerably less than the design outdoor temperature. The outdoor temperature may vary hourly during a twenty-four hour day. It varies day to day, month to month, and season to season. It is the average outdoor temperature that dictates the number of hours of equipment operation. As the outdoor temperature drops, the capacity of Thermobank increases. With more BTU's per hour, the equipment operates less time to handle the 24 hour refrigeration load. Page 7 shows the Annual Average Outdoor Temperature for locations throughout the U.S.A. and Canada. Select the location nearby or similar in temperature. The estimated annual electrical savings can be calculated from Table 1.

AVERAGE OUTDOOR TEMPERATURE

STATE-CITY			STATE-CITY	AAOT-°F	STATE-CITY	AAOT-°F	
ALABAMA	63	IOWA	48	NEW YORK	46	VIRGINIA	55
Birmingham	62	Des Moines	50	Albany	47	Norfolk	59
Huntsville	60	KANSAS	55	Buffalo	48	Richmond	58
Mobile	67	Goodland	51	New York	55	Roanoke	56
ALASKA	26	Wichita	56	Syracuse	47	WASHINGTON	48
Anchorage	36	KENTUCKY	56	NORTH CAROLINA	59	Seattle	53
Fairbanks	27	Louisville	56	Asheville	55	Spokane	47
Juneau	41	LOUISIANA	66	Charlotte	60	PUERTO RICO	76
ARIZONA	60	New Orleans	68	Raleigh	59	San Juan	79
Flagstaff	46	Shreveport	65	NORTH DAKOTA	41	WEST VIRGINIA	52
Phoenix	72	MAINE	41	Bismarck	41	Beckley	51
ARKANSAS	61	Portland	45	OHIO	51	Charleston	55
Little Rock	61	MARYLAND	54	Akron	50	Elkins	49
CALIFORNIA	59	Baltimore	55	Cincinnati	53	WISCONSIN	43
Fresno	63	MASSACHUSETTS	48	Cleveland	50	Green Bay	44
Los Angeles	65	Boston	51	Columbus	51	Milwaukee	46
Redding	62	Blue Hill Obs.	48	Youngstown	48	WYOMING	43
San Francisco	57	MICHIGAN	45	OKLAHOMA	60	Cheyenne	46
Stockton	61	Detroit	49	Oklahoma City	60	Sheridan	45
COLORADO	45	Grand Rapids	47	OREGON	49		
Colorado Springs	49	Marquette	39	Portland	53	CANADA	4
Denver	50	MINNESOTA	41	PENNSYLVANIA	49	PROVINCE-CITY	AAOT-°F
Grand Junction	53	Duluth	38	Allentown	51	ALBERTA	AAOTT
CONNECTICUT	49	Minneapolis	45	Erie	49	Calgary	35
Hartford	50	MISSISSIPPI	63	Philadelphia	54	Edmonton	34
DELAWARE	55	Jackson	64	Pittsburgh	50	BRITISH COLUMBIA	34
			-	ı			F4
Wilmington D.C.	54	Tupelo	62	Scranton	49	Vancouver	51
	55	MISSOURI	55	RHODE ISLAND	50	Victoria	51
Washington	57	Kansas City	54	Providence	50	MANITOBA	0.5
FLORIDA	71	St. Louis	56	SOUTH CAROLINA	63	Brandon	35
Gainesville	68	MONTANA	433	Charleston	65	Winnipeg	36
Jacksonville	68	Billings	47	Greer	60	NEW BRUNSWICK	
Miami	75	Glasgow	42	SOUTH DAKOTA	46	Saint John	42
Orlando _	72	Great Falls	45	Huron	45	NEWFOUNDLAND	
Tampa	72	Helena	44	TENNESSEE	58	Gander	43
W. Palm Beach	74	NEBRASKA	49	Bristol	55	St. John's	44
GEORGIA	64	North Platte	48	Knoxville	57	NOVA SCOTIA	
Atlanta	61	Omaha	50	Memphis	62	Halifax	46
Macon	64	Scottsbluff	48	TEXAS	65	ONTARIO	
Savannah	66	Valentine	47	Amarillo	57	Ottawa	42
HAWAII	76	NEVADA	50	Dallas	65	Sault Ste. Marie	40
Honolulu	77	Las Vegas	67	El Paso	63	Thunder Bay	37
IDAHO	45	Reno	51	Houston	68	Toronto	47
Boise	51	NEW HAMPSHIRE	44	Lubbock	60	Windsor	49
ILLINOIS	52	Concord	45	San Antonio	68	QUEBEC	
Chicago	49	NEW JERSEY	63	Wichita Falls	63	Montreal	43
Peoria	51	Newark	55	UTAH	49	Quebec	39
INDIANA	52	Trenton	54	Salt Lake City	52	SASKATCHEWAN	
Fort Wayne	50	NEW MEXICO	54	VERMONT	43	Regina	35
Indianapolis	52	Albuquerque	56	Burlington	44	Saskatoon	34

					Ca	lculate	Your Sa	avings
ANNUAL AVERAGE OUTDOOR TEMPERATURE	75°F	70°F	65°F	60°F	55°F	50°F	45°F	40°F
ESTIMATED ANNUAL ELECTRICAL SAVINGS	5%	10%	15%	20%	25%	30%	35%	40%
FACTOR TO COST CONVENTIONAL SYSTEM	0.95	0.90	0.85	0.80	0.75	0.70	0.65	0.60

Conventional System Operating Cost x Factor = Thermobank Operating Cost. For temperature between those shown, interpolate to obtain savings.

LOW TEMPERATURE (0°F to -40°Fst) PERFORMANCE DATA

MODEL		SUCTION TEMPERATURE												
CTT	0°F	-5°F	-10°F	-15°F	-20°F	-25°F	-30°F	-40°F						
1200L44	96,100	86,000	76,800	68,400	60,700	53,400	46,500	33,200						
1500L44	113,700	102,400	92,200	82,700	73,900	65,700	57,800	42,400						
2200L44	132,000	119,800	109,200	98,100	87,500	77,300	67,600	49,100						
2700L44	169,800	153,700	138,100	123,100	108,700	95,200	82,600	60,400						
3100L44	187,300	169,600	153,900	136,300	121,700	106,400	92,700	69,350						
4400L44	267,000	242,100	218,600	196,300	175,100	154,800	135,300	98,300						
5400L44	340,500	307,900	279,100	248,500	219,400	192,000	166,400	121,700						
6200L44	373,300	338,000	306,700	271,650	242,600	212,100	184,750	138,200						

AMBIENT CORRECTION FACTOR										
AMB.	R404A									
80°F	1.15									
85°F	1.10									
90°F	1.05									
95°F	1.00									
100°F	0.95									
105°F	0.90									

For design conditions other than 95° F, multiply the rating by the correction factor.

LOW TEMPERATURE PHYSICAL DATA

MODEL	COI	MPRESSOR	CO	ND FA	NS	CONNE	CTIONS	CHARG	E LBS.	UNIT	APPROX.
CTT	QTY.	MODEL NO.	QTY.	DIA.	HP	SUC. OD	LIQ. OD	UNIT ²	RECV ¹	CONFIG.	NET LBS.
1200L44	1	4DA-F47KE	2	30	1	1-5/8	5/8	22	95	В	1,300
1500L44	1	4DH-F63KE	2	30	1	1-5/8	5/8	29	95	В	2,200
2200L44	1	4DJ-F76KE	2	30	1	2-1/8	7/8	39	128	В	2,500
2700L44	1	6DH-F93KE	2	30	1	2-1/8	7/8	49	162	В	3,100
3100L44	1	6DJ-F11ME	3	30	1	2-1/8	7/8	58	195	С	3,600
4400L44	2†	4DJ-F76KE	4	30	1	3-1/8	1-1/8	58	195	D	5,000
5400L44	2†	6DH-F93KE	4	30	1	3-1/8	1-1/8	101	370	D	5,500
6200L44	2†	6DJ-F11ME	6	30	1	3-1/8	1-1/8	101	370	E	7,000

[†] Compressors piped in parallel.

See back cover for unit configuration.

LOW TEMPERATURE ELECTRICAL DATA

MODEL			230/3/6	60			208/3/	60 and	230/3/6	60			460/3/6	60	
MODEL CTT	COI	VIP.	COND. UNIT		MCA‡	COI	MP.	COND.	UNIT	MCA‡	CO	MP.	COND.	UNIT	MCA‡
OTT	RLA	LRA	FLA	AMPS	IVICA+	RLA	LRA	FLA	AMPS	IVICA+	RLA	LRA	FLA	AMPS	WICA+
1200L44	45.2	220	8.0	58.2	70	_	-	_	-	-	22.6	110	4.0	31.1	37
1500L44	52.6	278	8.0	65.6	79	-	_	-	-	-	26.3	139	4.0	34.8	42
2200L44	-	-	-	_	_	57.7	374	8.0	70.7	86	28.8	187	4.0	37.3	45
2700L44	-	-	-	_	-	72.4	450	8.0	85.4	104	36.2	225	4.0	44.7	54
3100L44	-	-	-	_	_	85.9	470	12.0	102.9	125	42.9	235	6.0	53.4	65
4400L44	-	_	_	_	_	115.4	748	16.0	137.4	152	57.6	374	8.0	70.6	78
5400L44	-	_	-	_	-	144.8	900	16.0	166.8	185	72.4	450	8.0	85.4	95
6200L44	_	-	_	_	_	171.8	940	24.0	201.8	224	85.8	470	12.0	102.8	114

MODEL			575/3/0	3 0	
CTT	CO	MP.	COND.	UNIT	MCA‡
	RLA	LRA	FLA	AMPS	WCA
1200L44	17.5	106	4.2	22.2	27
1500L44	20.9	113	4.2	25.6	31
2200L44	24.1	135	4.2	28.8	35
2700L44	32.5	172	4.2	37.2	45
3100L44	39.6	200	6.3	46.4	56
4400L44	48.2	270	8.4	57.1	69
5400L44	65.0	344	8.4	73.9	90
6200L44	79.2	400	8.4	88.1	108

[‡] MCA does not include evaporator motors.

¹ Receiver at 90% full.

² Estimated refrigerant charge is for a condensing unit only. It does not include evaporators, interconnecting piping or other accessories.

⁻ Not Available

MEDIUM TEMPERATURE (+10°F to +25°Fst) PERFORMANCE DATA

MODEL		R404A	& R507			R40)7C			
MODEL CTT	SU	CTION TE	MPERATU	IRE	SUCTION TEMPERATURE					
CII	+ 25°F	+ 20°F	+ 15°F	+ 10°F	+ 25°F	+ 20°F	+ 15°F	+ 10°F		
1200M**	125,300	114,700	104,600	95,000	112,100	101,300	91,300	81,800		
1500M**	144,300	130,700	119,100	108,000	129,100	115,500	103,900	93,000		
2000M**	157,900	143,500	132,200	118,900	150,000	136,300	125,600	113,000		
2500M**	201,000	183,200	167,700	151,200	179,700	161,800	146,300	130,200		
3000M**	228,100	207,700	188,400	170,100	204,000	183,400	164,300	146,500		
3500M**	298,900	272,000	246,700	222,900	267,300	240,200	215,200	192,000		
4000M**	339,400	310,000	282,000	255,400	303,500	273,800	246,000	219,900		
5000M**	384,800	350,400	317,300	285,900	344,100	309,500	276,700	246,200		
6000M**	455,400	384,800	376,300	339,800	407,200	339,800	328,200	292,600		
7000M**	584,100	455,400	485,700	440,300	522,200	402,200	423,600	379,100		

AMBIENT CORRECTION FACTOR												
AMB. R404A R407C												
80°F	1.15	1.10										
85°F	1.10	1.07										
90°F	1.05	1.03										
95°F	1.00	1.00										
100°F	0.95	0.96										
105°F	0.90	0.92										

^{** 44 =} R404A OR R507, 47 = R407C. For ambient design conditions other than 95°F, multiply the rating by the correction factor.

MEDIUM TEMPERATURE PHYSICAL DATA

							CONNE	CTIONS	;		CHARG	GE LBS.			
MODEL CTT	CC	MPRESSOR	COND. FANS		R407C		R-404A & R-507		R40)7C	R-40 R-5	4A & 507	UNIT CONFIG.	APPROX. NET	
011	QTY.	MODEL NO.	ΩΤΥ.	DIA.	НР	SUC. OD	LIQ. OD	SUC. OD	LIQ. OD	UNIT ²	RECV ¹	UNIT ²	RECV ¹		LBS.
1200M**	1	3DF-R15ME	2	30	1	1-5/8	7/8	1-5/8	7/8	29	106	25	91	В	2,000
1500M**	1	3DS-R17ME	2	30	1	1-5/8	7/8	1-5/8	7/8	34	102	29	94	В	2,200
2000M**	1	4DB-R20ME	2	30	1	2-1/8	7/8	2-1/8	7/8	34	102	29	94	В	2,600
2500M**	1	4DH-R22ME	2	30	1	2-1/8	7/8	2-1/8	7/8	45	140	39	128	В	3,000
3000M**	1	4DJ-R28ME	3	30	1	2-1/8	1-1/8	2-1/8	1-1/8	68	213	58	195	С	3,600
3500M**	1	6DH-R35ME	3	30	1	2-1/8	1-1/8	2-1/8	1-1/8	68	213	58	195	С	3,800
4000M**	1	6DJ-R40ME	3	30	1	2-1/8	1-3/8	2-1/8	1-1/8	86	286	74	262	С	4,300
5000M**	2‡	4DH-R22ME	4	30	1	2-5/8	1-1/8	2-5/8	1-1/8	90	286	78	262	D	5,250
6000M**	2‡	4DJ-R28ME	4	30	1	2-5/8	1-5/8	2-5/8	1-3/8	118	403	101	370	D	5,700
7000M**	2‡	6DH-R35ME	6	30	1	3-1/8	1-3/8	3-1/8	1-3/8	131	403	113	370	E	8,000

^{** 44 =} R404A or R507, 47 = R407C † Compressors piped in parallel. See back cover for unit configuration.

MEDIUM TEMPERATURE ELECTRICAL DATA

		2	08-230/3	3/60		2	08/3/6	0 and 2	230/3/6	0			460/3/6	60	
MODEL CTT	CO	MP.	COND.	UNIT	MCA ³	COI	VIP.	COND.	UNIT	MCA ³	COI	MP.	COND.	UNIT	MCA ³
011	RLA	LRA	FLA	AMPS	IVICA	RLA	LRA	FLA	AMPS	IVICA	RLA	LRA	FLA	AMPS	IVICA
1200M**	48.2	275	8.0	57.2	69	_	_		-	_	23.6	138	4.0	28.6	34
1500M**	53.5	275	8.0	65.5	79	_	_	-	-	_	26.0	138	4.0	34.0	41
2000M**	_	_	-	_	_	64.7	374	8.0	76.7	93	32.4	187	4.0	40.4	49
2500M**	_	_	_	-	-	73.7	428	8.0	85.7	105	36.9	214	4.0	44.9	55
3000M**	_	_	-	_	-	94.6	470	12.0	110.6	135	47.3	235	6.0	57.3	70
3500M**	-	_	_	-	-	112.3	565	12.0	128.3	157	56.2	283	6.0	66.2	81
4000M**	_	_	_	-	_	128.2	594	12.0	144.2	177	64.1	297	6.0	74.1	91
5000M**	_	_	_	_	_	147.4	856	16.0	167.4	186	73.8	428	8.0	85.8	96
6000M**	_	_	_	-	-	189.2	940	16.0	209.2	233	94.6	470	8.0	106.6	119
7000M**	_	_		_	_	224.6	1130	24.0	252.6	281	112.4	566	12.0	128.4	143

op.	575/3/60					
MODEL CTT	COMP.		COND.	UNIT	MCA ³	
	RLA	LRA	FLA	AMPS	IVICA	
1200M**	_	_	-	-	-	
1500M**	23.6	110	4.2	28.8	34	
2000M**	28.2	135	4.2	36.2	44	
2500M**	34.4	172	4.2	39.6	48	
3000M**	39.3	200	6.3	46.6	56	
3500M**	42.5	230	6.3	49.8	60	
4000M**	53.5	245	6.3	60.8	74	
5000M**	68.8	344	8.4	78.2	95	
6000M**	78.6	400	8.4	88.0	107	
7000M**	85.0	460	12.6	98.6	119	

¹ Receiver at 90% full.

² Estimated refrigerant charge is for a condensing unit only. It does not include evaporators, interconnecting piping or other accessories.

^{** 44 =} R404A OR R507, 47 = R407C

³ MCA does not include evaporator motors.

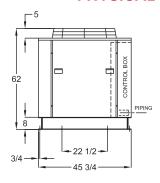
[–] Not Available

Department of Energy Annual Walk-In Energy Factor (AWEF) Ratings				
Base Model Number	AWEF			
	Outdoor Rated	Indoor Rated		

Medium Temperature Models¹

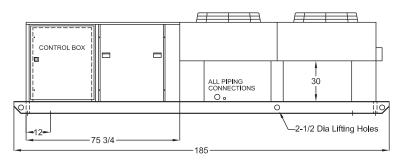
CTT*1200M4*	7.6	_
CTT*1500M4*	7.6	_
CTT*2000M4*	7.6	_
CTT*2000M4*	7.6	_
CTT*2500M4*	7.6	_

Low Temperature Models²

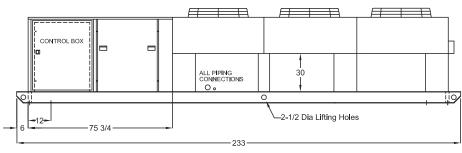

CTT*1200L4*	3.15	_
CTT*1500L4*	3.15	_
CTT*2200L4*	3.15	_
CTT*2700L4*	3.15	_
CTT*3100L4*	3.15	_

* Each asterisk represents a variable character based upon model, voltage, and vintage ordered. See page 3 for nomenclature.

See page 11 for dimensional drawings.

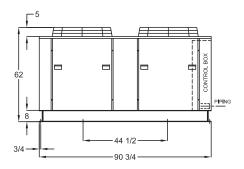

- ^ Larger HP Single and Parallel Compressor models are not intended for use in walk-in coolers and freezers less than 3,000 sq. feet thus are outside of the scope of this DOE regulation. Dual Compressor models serve more than one refrigerated load thus are outside (exempt) of the scope of this DOE regulation.
- If the medium temperature model has a numerical value in the table above, the following statement applies: "This refrigeration system is designed and certified for use in walk-in cooler applications."
- If the low temperature model has a numerical value in the table above, the following statement applies: "This refrigeration system is designed and certified for use in walk-in freezer applications."

PHYSICAL DIMENSIONS

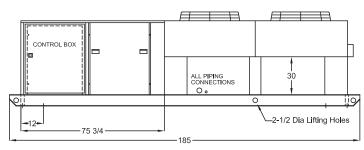


Dimensions are for Fan Configurations "B" and "C" below.

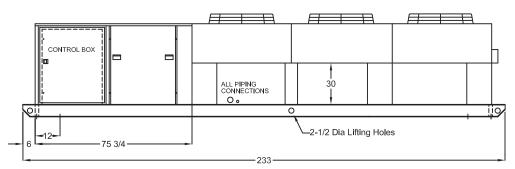
All dimensions are in inches.



FAN CONFIGURATION "B"


FAN CONFIGURATION "C"

PHYSICAL DIMENSIONS



Dimensions are for Fan Configurations "D" and "E" below.

All dimensions are in inches.

FAN CONFIGURATION "D"

FAN CONFIGURATION "E"

Due to ongoing product improvement, specifications are subject to change without notice. 201 Thomas French Drive, Scottsboro, AL 35769 • PHONE (256) 259-7400 • FAX (256) 259-7478 • kramer.htpg.com E-mail or call us for help: parts@htpg.com or 1-855-HTPARTS (1-855-487-2787)

