

The new degree of comfort.™

H₂AC[™] Rooftop Unit *featuring eSync[™] Integration Technology*

RLHL Series

- With ClearControl™
- Nominal Size: 10 Ton [35.1 kW]
- ASHRAE 90.1-2010 Compliant Models

RHEEM HIGH EFFICIENCY TANKLESS OR COMMERCIAL TANK RECOMMENDED FOR THE GREATEST ENERGY SAVINGS POTENTIAL.

Rheem Commercial Water Storage Tank:

- 2" fittings
- 80 or 115 Gallon Capacities available

TABLE OF CONTENTS

Unit Features & Benefits	3-9
Model Number Identification	10
Options	11
Selection Procedure	12
eSync Integration Technology™ Cost Savings Example	13
eSync Integration Technology™ Typical Piping Example	14
eSync Integration Technology™ Typical Piping Maximum Length	15
eSync Integration Technology™ Piping Equivalent Length	16
General Data	
RLHL- Series	17-18
General Data Notes	19
Gross Systems Performance Data	
RLHL- Series	20-23
Airflow Performance	
RLHL- Series	24-25
Electrical Data	
RLHL- Series	26
Electric Heater Kits	27-28
Dimensional Data	29-33
Accessories	34-53
Mechanical Specifications	54-59
Wiring Diagrams	60-67
Limited Warranty	68

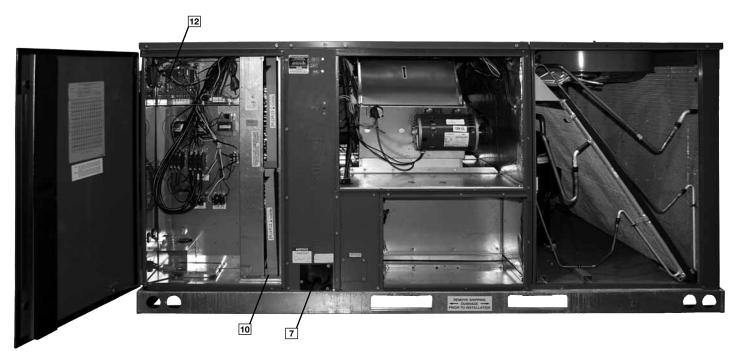
- R-410A HFC refrigerant
- · Complete factory charged, wired and run tested
- Scroll compressors with internal line break overload and high-pressure protection
- RLHL-C120 has a single stage compressor.
- RLHL-D120 has dual independent compressors.
- Downflow only
- TXV refrigerant metering system
- High Pressure and Low Pressure/Loss of charge protection standard on all models
- · Solid Core liquid line filter drier
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies
- · Cooling operation up to 125 degree F ambient
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers
- Slide Out Indoor fan assembly for added service convenience
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection G90 galvanized
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management
- · Forkable base rails for easy handling and lifting

- Single point electrical connections
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system
- Permanently lubricated evaporator and condenser motors
- Condenser motors are internally protected, totally enclosed with shaft down design
- 2 inch filter standard with slide out design
- 24 volt control system with resettable circuit breakers
- Colored and labeled wiring
- Copper tube/Aluminum Fin indoor coils with all aluminum MicroChannel condenser coil
- Supplemental electric heat provides 100% efficient heating.
- Factory Installed ClearControl[™], a Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control
- Pressure sensors provide refrigerant pressures, superheat, and subcooling on the ClearControl[™] display
- H₂AC Package Unit featuring eSync Integration Technology includes water circulation pump, refrigerant-to-water heat exchanger, and eSync Integration Technology control board for heat recovery during air conditioning mode to preheat potable water.

Rheem Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Rheem Commercial SeriesTM label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The Rheem hail guard (4) (optional) is its trademark, and sets the standard for coil protection in the industry. Every Rheem package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

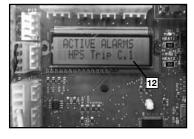
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340/360 and other Rheem-required reliability tests. Rheem adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (8). Contractors can rest assured that when a Rheem package unit arrives at the job, it is ready to go with a factory refrigerant charge and quality checks.

Access is granted with 1/4 turn fasteners and hinged access panels. Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and electric heat access).

Electrical and filter compartment access is through a large hinged access panel. The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is

also placed in this location (9). The two-inch throwaway filters (10) are on a tracked system for easy removal and replacement.



Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wiring diagram for ease of troubleshooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor, and contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RLHL Package Air Conditioner has a Rooftop Unit Controller

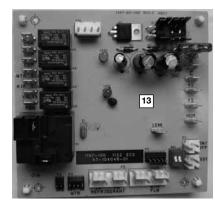
(RTU-C) factory mounted and wired in the control panel. The RTU-C is a solidstate microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through Proportional/Integral control algorithms perform specific unit functions that govern unit operation in

response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system (12). New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line

temperatures. The RLHL Package Air Conditioner with the RTU-C is specifically designed to be applied in four distinct applications:

The RLHL is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA- 485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RLHL is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.


The RLHL is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

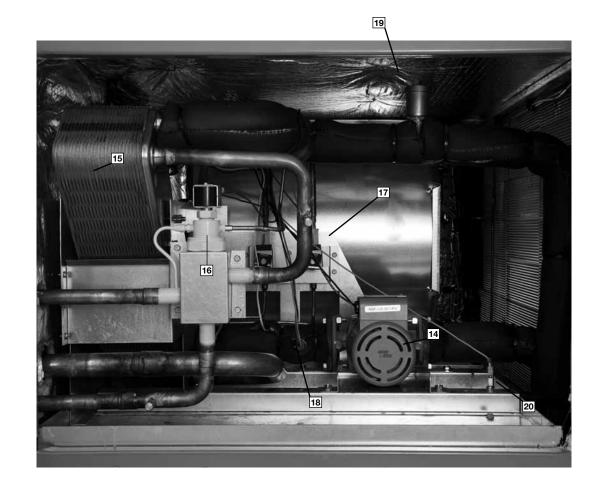
The RLHL is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

The RLHL has a special eSync Integration Technology (potable water heating) control board (13) connected to the Rooftop Unit Controller (RTU-C) that allows potable water heat recovery during air conditioning mode. The eSync Integration Technology control board adds pressure sensors to provide refrigerant pressures, superheat, and subcooling on the RTU-C LCD display.

Whenever a call for cooling is present, the Rheem H₂AC Rooftop Unit samples the water storage tank temperature (not included). If the water temperature is below the setpoint, then heat that is normally rejected to the outdoor condenser coil is instead rejected to a heat exchanger in the Rheem H₂AC Rooftop Unit to provide hot

water. The setpoint has a default value of 95°F but self-adjusts to jobsite conditions to allow the maximum heat recovery. The preheated water leaving the storage tank for the Rheem H₂AC


Rooftop Unit must then be heated to the desired final temperature by a separate tank or tankless water heater.

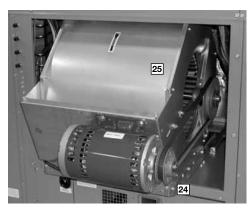
The RLHL includes a water circulation pump (14), a double wall, vented, refrigerant-to-potable water heat exchanger (15), a 3-way refrigerant valve (16) to switch between the outdoor condenser coil and the refrigerant-to-water heat exchanger, idle heat exchanger refrigerant pumpdown solenoid valves (17), and a water pressure sensor (18) to prevent operation of the water pump if water is not present. All are controlled by the eSync Integration Technology control. The unit also includes an air vent (19) to automatically bleed air from the water lines, and a water leak detector (20) that will shut down water heating operation should a leak be detected and can send an alarm over a BAS network to notify others. In the event of this alarm, an optional field-installed water shut-off valve is available to disconnect the unit from the potable

The rear of the unit includes potable water line connections to the water storage tank for the Rheem H₂AC Rooftop Unit. For ease of installation, pipe unions ([21]) are provided to connect to 1-1/2" nominal copper water lines. The lines are provided with plastic covers to keep out contaminates until the system is installed.

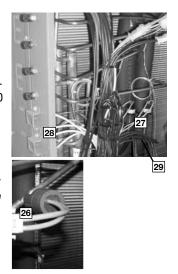
water supply.

For added convenience in the field. a factory-installed convenience outlet and disconnect (22) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease

of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

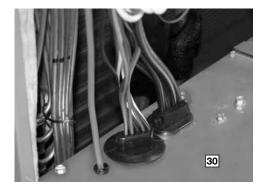

To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identi-

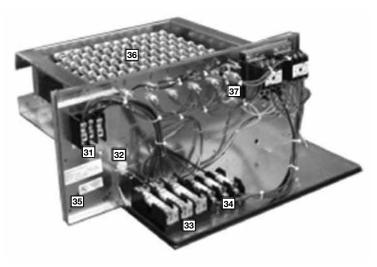
fied by embossed wording that clearly identifies the compressor circuit, high pressure connection and low pressure connection (23). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily. Brass caps on the Schrader fitting assure that the gauge ports are leak proof.


The blower compartment is to the right of the gauge ports and can be accessed by 1/4 turn fasteners. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing two 3/8" screws from the blower retention bracket. The adjustable motor pulley (24) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static. Rheem has high-

static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions. proper static pressure and CFM requirements can be dialed in. The scroll housing (25) and blower scroll

provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.


Also inside the blower compart ment is the low-ambient control (26), low-pressure switch (27). high-pressure switch (28) and freeze sensor (29). The lowambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, as may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing)



due to low airflow and allows monitoring of the suction line temperature on the controller display. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and Schrader fittings allow for easy field installation.

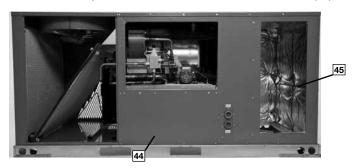
Inside the blower compartment the evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (30) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

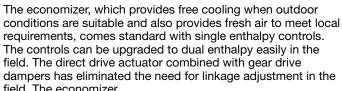
The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with ease-of-installation in mind, the electric furnace is completely wired for slide-in, plug-and-play installation in the field. With choices of up to six kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.

Power hook-up in the field is easy with single-point wiring to a terminal block (31) and a polarized plug for the low-voltage connection (32). The electric furnace comes with fuses for the unit (33) and for the electric furnace (34), and is UL certified (35). The electric heating elements are of a wound-wire construction (36) and isolated with ceramic bushings. The limit switch (37) protects the design from over-temperature conditions.

The compressor compartment houses the heartbeat of the unit. The scroll compressor (39) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (40) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing.


Each unit comes standard with a filter/dryer (41). The condenser fan motor (42) can easily be accessed and

maintained through the top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

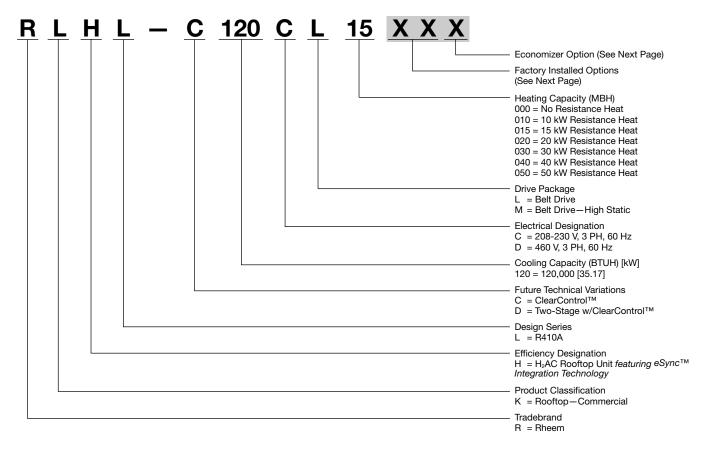

39

The outdoor coil uses the latest MicroChannel technology (43) for the most effective method of heat transfer. The outdoor coil is protected by optional* louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

These units are designed for downflow applications only (44). The return air compartment can also contain an economizer (45).

Two economizer models exist for downflow applications (a downflow economizer with factory installed smoke detector in the return section is available. Each unit is prewired for the economizer to allow quick plug-in installation. The economizer is also available as a factory-installed option.

field. The economizer control has a minimum position setpoint, an outdoor-air enthalpy setpoint, a mixed-air temperature setpoint, and an indoor CO2 level setpoint. Barometric relief (46) is standard on all economizers. Power Exhaust (47) is easily field installed. The power exhaust is housed in the baro-


metric relief opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

The Rheem roofcurb ((48)) is made for toolless assembly at the jobsite by engaging a pin into the hinged corners of adjacent curb sides, which makes the assembly process quick and easy.

FACTORY INSTALLED OPTION CODES FOR RLHL (10 TON) [35.1 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Freeze Stat
AD	x		
AG		X	
AR		Х	X
JD	X		X
BJ	Х	X	
CZ	X	X	X
JE	X	X	X

NOTES: (1) High and low pressure is standard on all models.

ECONOMIZER SELECTION FOR RLHL (10 TON) [35.1 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer w/Barometric Relief	DDC Single Enthalpy Economizer w/Barometric Relief and Smoke Detector
A	Х		
Н		Х	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

RLHL120CL000.....this unit has no factory installed options.

RLHL120CL000**ADA**.....this unit is equipped with *hail guards*.

RLHL120CL000**JDA**this unit is equipped with <u>hail guards, low ambient and Comfort Alert.</u>

RLHL120CL000**JDH**this unit is equipped as above and includes an <u>Economizer</u>

with single enthalpy sensor and with barometric relief.

RLHL120CL000**AAJ**this unit is equipped with an <u>Economizer with single enthalpy sensor and</u>
Barometric Relief with smoke detector.

[&]quot;x" indicates factory installed option.

To select a Rheem RLHL Cooling H₂AC Rooftop Unit *featuring* eSync Integration Technology unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

240V-3 Phase 60 Hz Voltage-Total cooling capacity— 106,000 BTUH [31.0 kW] 82,000 BTUH [24.0 kW] Sensible Cooling Capacity — Heating Capacity -150,000 BTUH [43.9 kW] *Condenser Entering Air -95°F [35.0 °C] DB *Evaporator Mixed Air Entering — 65°F [18.3 °C] WB 78°F [25.6 °C] DB *Indoor Air Flow (vertical) -3600 CFM [1699 L/s] *External Static Pressure -0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3600 CFM [1699 L/s] indoor air flow (table basis):

Total Cooling Capacity = 116,450 BTUH [34.10 kW] Sensible Cooling Capacity = 97,750 BTUH [28.04 kW] Power Input (Compressor and Cond. Fans) = 8,850 watts

Use formula in note (1) to determine sensible capacity at 78°F [25.6 °C] DB evaporator entering air:

95,750 + (1.10 x 3,600 x (1 – 0.05) x (78 – 80))

Sensible Cooling Capacity = 88,226 BTUH [25.83 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3600 CFM [1699 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $116,450 \times 1 = 116,450 \times 1$

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3600 CFM [1699 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance", 0 in. WG [.00 kPa] for wet coil, 0.076 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.476 (0.5) in. WG [.12 kPa], and determine:

RPM = 769 WATTS = 1,576 DRIVE = L (standard 2 H.P. motor)

12

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

 $1,576 \times 3.412 = 5,377 BTUH [1.57 kW]$

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 116,450 - 5,377 = 111,073 BTUH [32.52 kW]

Net Sensible Capacity = 88,226 - 5,377 = 82,849 BTUH [24.26 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 8,850 (step 3) + 1,576 (step 4) = 10,426 Watts

EER = $\frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{111,073}{10,426} = 10.65$

8. SELECT UNIT HEATING CAPACITY.

From Heater Kit Table select kW to meet heating capacity requirement multiply kW x 3412 to convert to BTUH

Use 50 kW Heater Kit

Heater Kit Model RXJJ-CC50C

Heating Capacity = 163,750 BTUH [47.9 kW]

Add indoor blower heat effect (STEP 5) to Heater Kit Capacity to get total heating capacity:

163,750 + 5,377 = 169,127 BTUH [49.5 kW]

9. CHOOSE MODEL RLHL-C120CL050

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Whenever a call for cooling is present, the H₂AC unit samples the temperature of the storage tank for the H₂AC unit. If it is below the setpoint, then heat that is normally rejected to the outdoor condenser coil is instead rejected to a heat exchanger in the H₂AC unit to provide hot water. The preheated water leaving the storage tank must then be heated to the desired final temperature by a separate tank or tankless heater. The cost savings are provided by the difference between heating water from the ground temperature to the final hot water temperature versus heating water from the storage tank temperature to the final hot water temperature.

1. Calculate daily cost of operation of existing water heating equipment.

Hot Water Consumption (gallons)	Water Specific Weight (Ibm/gallon)	Hot Water Temperature (°F)	Ground Water (Cold Water) Temperature (°F)	*Required Water Heating Output (therms)
2100	8.33	185	73.5	19.505

^{* = 2100} gallons x 8.33 lbm/gallon x (185°F - 73.5 °F) x 1 Btu/(1 lbm x 1 °F) x (1 therm/100,000 Btu)

Water Heater Type	Water Heater Thermal Efficiency	Water Heating Input (therms)	Fuel Cost	Water Heating Cost
Natural Gas Storage Tank	0.80	24.381	\$1.077 per therm (\$/thm)	\$26.26
Propane Gas Storage Tank	0.80	24.381	\$1.210 per gallon of Propane (\$/gal)	\$32.22
Hi-e Natural Gas Storage Tank	0.94	20.750	\$1.077 per therm (\$/thm)	\$22.35
Hi-e Propane Gas Storage Tank	0.94	20.750	\$1.210 per gallon of Propane (\$/gal)	\$27.43
Electric Storage Tank	0.98	19.903	\$0.127 per kiloWatt hour (\$/kWh)	\$74.08
Tankless Natural Gas	0.94	20.750	\$1.077 per therm (\$/thm)	\$22.35
Tankless Propane Gas	0.94	20.750	\$1.210 per gallon of Propane (\$/gal)	\$27.43

(Required Water Heating Output/Thermal Efficiency = Water Heating Input)

2. Calculate daily cost savings from H₂AC operation.

Daily hours when hot water is required without air conditioner operation available Storage Tank Leaving Water Temperature (°F) — Maximum temperature is 125°F Required H₂AC Water Heating Output (thm) = 2100 gallons x 8.33 lbm/gallon x (120°F - 73.5 °F) x 1 Btu/(1 lbm x 1 °F) x (1 therm/100,000 Btu) x ((24-0)/24)

0 120

8.134

Water Heater Type	Water Heater Thermal Efficiency	**Water Heating Input (therms)	Fuel Cost	Water Heating Cost
Natural Gas Storage Tank	0.80	14.213	\$1.077 per therm (\$/thm)	\$15.31
Propane Gas Storage Tank	0.80	14.213	\$1.210 per gallon of Propane (\$/gal)	\$18.79
Hi-e Natural Gas Storage Tank	0.94	12.096	\$1.077 per therm (\$/thm)	\$13.03
Hi-e Propane Gas Storage Tank	0.94	12.096	\$1.210 per gallon of Propane (\$/gal)	\$15.99
Electric Storage Tank	0.98	11.603	\$0.127 per kiloWatt hour (\$/kWh)	\$43.18
Tankless Natural Gas	0.94	12.096	\$1.077 per therm (\$/thm)	\$13.03
Tankless Propane Gas	0.94	12.096	\$1.210 per gallon of Propane (\$/gal)	\$15.99

^{**(}Required Water Heating Output - Required H2AC Water Heating Output)/Thermal Efficiency

The savings in fuel to provide hot water are offset a bit by higher air conditioning costs in the water heating mode especially during mild weather. The calculations below provide the electrical cost increase for the worst case (mild weather) and for the best case (summer design conditions). The results assume AHRI return air conditions (80°F db/ 67°F wb).

3. Calculate daily increase in electricity cost from eSync operation.

Summer Design Outdoor Air Temperature (°F)	95
Minimum Outdoor Air Temperature, Cooling Mode (°F)	75
Gross Watts Air Conditioning Mode @ Summer Design Outdoor Air Temperature (kW) from Gross Capacity Tables	8.40
Gross Watts Air Conditioning Mode @ Minimum Outdoor Air Temperature Cooling Mode (kW) from Gross Capacity Tables	6.80
Gross Watts Water Heating Mode @ Storage Tank Leaving Water Temperature (kW) from Tables	4.60
Gross Capacity Water Heating Mode @ Storage Tank Leaving Water Temperature (Btuh) from Tables	82,400
Gross Watts 2nd Stage Correction (kW) @ Summer Design Outdoor Air Temperature from Tables	4.60
Gross Watts 2nd Stage Correction (kW) @ Minimum Outdoor Air Temperature from Tables	3.70
Correction Factor for H₂AC Unit Operation during occupied hours	0.89
Water Heating Mode Time (hours) = 8.1342 thm x (100,000 Btuh/thm) / (0.89 x 82,400 Btuh)	11.090
Summer Design Conditions savings decrease = $((24-0) \text{ hrs}/ 24 \text{ hrs}) \times 11.090 \text{ hrs} \times ((4.6+4.6) - 8.4) \text{ kW} \times 0.127 \text{ kWh}$	-\$1.13
Minimum Outdoor Air Temperature savings decrease = ((24-0) hrs/ 24 hrs) x 11.090 hrs x ((4.6+3.7) - 6.8) kW x 0.127 \$/kWh	-\$2.11 ◀

4. Subtract the values above from the Water Heating Costs in step 2 to find total daily savings.

For example, replacing a Natural Gas Storage Tank system with an H₂AC unit and a Tankless Natural Gas system will conservatively save \$26.26 - \$13.03 -\$2.11 = \$11.12 per day. The new cost of heating water is only 58% of the original cost.

Adding an H₂AC unit to an existing natural gas water heater will conservatively save \$26.26 - \$15.31 - \$2.11 = \$8.84 per day. The new cost of heating water is only 66% of the original cost.

The H₂AC system with storage tank can provide any water heating system, tank or tankless, with preheated water

The water heating system must be sized properly for each installation.

and may not be suitable for all applications. See the water heater manufacturers The tankless system shown below is just one example of a typical installation recommendation for sizing and product specifications. H₂AC" Rooftop Unit 0 ankless Water Heater ankless Water Heater Tankless Water Heater ankless Water Heater MIC-6 Cpntroller

> Remote Control

DIRECT RECIRCULATION Circulation F Pump **₩** Dedicated Return Ŷ Immersion/ Aquastat Û Multi Unit Tankless installation and Direct Return Circulation:

Mone to 6 tankless water heaters shall be installed in a parallel manifold installation electronically connected together with an MIC-6 Manifold Controller installed in a single unit with a remote control. **₩** Ŷ Ŷ ₩ Gas Supply Hot Water Supply

- -Roof Line

Tank System Bypass

-Timer

 \Leftrightarrow

 \Rightarrow

û

Ú

Storage Tank

1|∞€

a luðariti

Plumbing shall be sized based on the total number of units and max flow rate of the system. Gas piping should be sized to accommodate the entire BTU load of the system and installed in accordance with local codes. Direct Recirculation The recirculation loop shall be returned to the cold water manifold feeding the tankless. It is required that the circulation pump be placed on a timer and controlled by an immersion thermostat. The aquastat shall be set 10 F below the thermostat setting of the tankless, the timer shall be set for peak demand periods. The pump shall be sized for 5 GPM © 25 ft. of head plus the loop head loss.

û

Û

п

<=

kpansion Tank

Û

Water

Cold J

l fr

Û

Cold Water[— to Building

Cold Water Main

location, and must be done in accordance with all local building This drawing is intended as a quide only. It is not to be used building codes. Installation may vary, depending on installation codes. Consult with local building officials prior to installation. drawing. This drawing does not imply compliance with local as an alternative to a professionally engineered project Return Circulation Line

egend

Normally Open Shut-off Valve Pressure Relief

Cold Water Isolator

Cold Water Pipe Hot Water Pipe

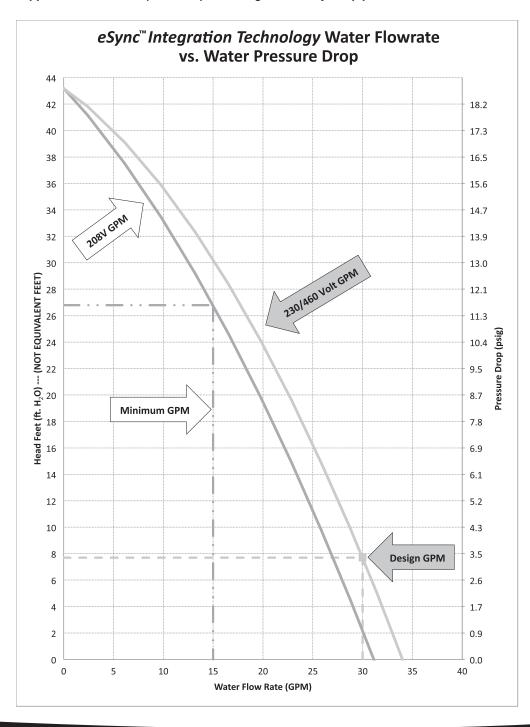
Gas Pipe

Check Valve

Normally Closed Shut-off Valve

Hot Water Isolator

Valve Assembly

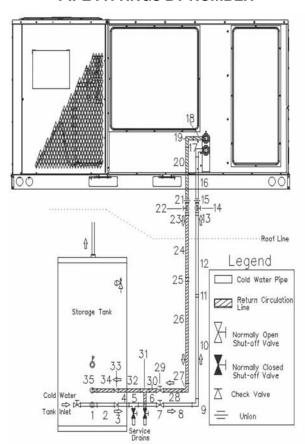


The chart below shows the H₂AC Rooftop Unit Water Flow Rate versus the Available Pressure Water Pressure drop. When selecting the location of the H₂AC Rooftop Unit, do not exceed the maximum Equivalent Feet of tubing between the H₂AC Rooftop Unit and the storage tank to ensure proper performance at available voltage. Higher GPM will provide a higher storage tank temperature.

Water Flow Rate (GPM Water Flow Rate (GPM)	(15 GPM minimum)	15	20	25	30
Water Velocity (fps)		2.71	3.61	4.51	5.41
Available Pressure Head at Unit @ 230/460 Volts	(Head ft.)	30.3	23.8	16.3	7.7
	(psig)	13.1	10.3	7.1	3.3
Maximum Equivalent Feet of 1-1/2" Nom. Type L Copper	Tubing (ft.)	1504	695	314	106
Available Pressure Head at Unit @ 208 Volts	(Head ft.)	26.8	19.5	11.3	2.2
	(psig)	11.6	8.4	4.9	0.9
Maximum Equivalent Feet of 1-1/2" Nom. Type L Copper	Tubing (ft.)	1332	569	218	30

In a closed system application the static (elevation) head is ignored. Only the pipe friction is used to calculate pressure drop.

PROCEDURE FOR CALCULATING THE TOTAL EQUIVALENT LENGTH OF TUBING


List all piping components from the Storage Tank to the H_2AC Rooftop Unit and back to the storage tank. The equivalent length of straight tubing is the same as the actual length. The equivalent length of fittings are obtained from the table below. Sum all of the individual component lengths to find the Total Equivalent Length Pressure Loss in Fitting and Valve.

PRESSURE LOSS IN FITTINGS AND VALVES EXPRESSED AS EQUIVALENT LENGTH OF TUBE (FT.)

Tube Nominal or Standard Size (inches)		1-1/2"	2"
	Standard 90° Elbow	4	5.5
	Standard 45° Elbow	1.5	2
Fittings	90° Tee - Side Branch	7	9
	90° Tee - Straight Run	0.5	0.5
	Coupling	0.5	0.5
	Ball	0.5	0.5
Valves	Gate	_	0.5
vaives	Btfly	_	7.5
	Check	6.5	9

Data condensed from Table 7 "Pressure Loss in Fittings & Valves Expressed as Equivalent Length of Tube" of the Copper Development Association. Allowances are for streamlined soldered fittings and recessed threaded fittings. The equivalent lengths presented above are based upon a C factor of 150 in the Hazen-Williams friction loss formula. The lengths shown are rounded to the nearest half foot.

PIPE FITTINGS BY NUMBER

TOTAL EQUIVALENT LENGTH OF FITTINGS

No.	Inlet	EQUIVALENT Length (ft.)	No.	Outlet	EQUIVALENT Length (ft.)
1	side branch Tee	7	18	straight tubing	1
2	straight tubing	1	19	90° elbow	4
3	Check valve	6.5	20	straight tubing	0.5
4	straight tubing	0.5	21	1-1/2" MPT adapter ①	1
5	straight run Tee	0.5	22	Ball Isolation valve	0.5
6	straight tubing	1.5	23	1-1/2" MPT adapter ①	1
7	Ball valve	0.5	24	straight tubing	20
8	straight tubing	5	25	coupling	0.5
9	90° elbow	4	26	straight tubing	19.6
10	straight tubing	20	27	90° elbow	4
11	coupling	0.5	28	straight tubing	4
12	straight tubing	20	29	Ball valve	0.5
13	1-1/2" MPT adapter ①	1	30	straight tubing	1.5
14	Ball Isolation valve	0.5	31	straight run Tee	0.5
15	1-1/2" MPT adapter ①	1	32	straight tubing	0.5
16	straight tubing	0.5	33	Check valve	6.5
17	90° elbow - fitting	4	34	straight tubing	1
17	90 elbow - litting	4	35	90° elbow	4
				Total Equivalent Length	144.6

*NOTES: ① For threaded fittings, double the allowances shown in the table.

Data condensed from Table 7 of the Copper Development Organization. Allowances are for streamlined soldered fittings and recessed threaded fittings. The equivalent lengths presented above are based upon a C factor of 150 in the Hazen-Williams friction loss formula. The lengths shown are rounded to the nearest half foot.

NOM. SIZES 10 TON [35.1 kW] ASHRAE 90.1-2007 COMPLIANT MODELS

Model RLHL- Series	C120CL	C120CM	C120DL	C120DM
Cooling Performance ¹	CIZUCE	GIZUGINI	GIZODE	CONTINUED>
Gross Cooling Capacity Btu [kW]	119,000 [34.87]	119,000 [34.87]	119,000 [34.87]	119,000 [34.87]
EER/SEER ²	11.25/NA	11.25/NA	11.25/NA	11.25/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3600 [1888/1699]	4000/3600 [1888/1699]	4000/3600 [1888/1699]	4000/3600 [1888/1699]
	115,000 [33.69]	115,000 [33.69]	115,000 [33.69]	115,000 [33.69]
AHRI Net Cooling Capacity Btu [kW]				
Net Sensible Capacity Btu [kW]	85,300 [24.99]	85,300 [24.99]	85,300 [24.99]	85,300 [24.99]
Net Latent Capacity Btu [kW]	29,700 [8.7]	29,700 [8.7]	29,700 [8.7]	29,700 [8.7]
IEER ³	11.9	11.9	11.9	11.9
Net System Power kW	10.2	10.2	10.2	10.2
Compressor	4/0 !!	4.0	4.00 "	4/0 !!
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8400 [3964]	8400 [3964]	8400 [3964]	8400 [3964]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Single	Single	Single	Single
No. Motors	1	1	1	1
Motor HP	2	3	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Potable Water Heat Recovery				
Heat Exchanger Type	Vented Double-Wall Flat Plate			
Material	Cu Brazed Stainless Steel			
No. Flat Plates	50	50	50	50
Unit Water Connections No./Size in. [mm]	2/1.625 [41.3]	2/1.625 [41.3]	2/1.625 [41.3]	2/1.625 [41.3]
Water Pump - Type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
Housing Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
GPM [L/s]	30 [1.89]	30 [1.89]	30 [1.89]	30 [1.89]
Head Pressure ft. H20 [kPa]	25 [74.7]	25 [74.7]	25 [74.7]	25 [74.7]
Motor HP	1/3	1/3	1/3	1/3
Motor RPM	3450	3450	3450	3450
Filter - Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. [g]	217.6 [6169]	217.6 [6169]	217.6 [6169]	217.6 [6169]
Weights	217.0 [0103]	217.0 [0103]	217.0 [0103]	[۱۱۵] ۲۱۲.۵
•	984 [446]	992 [450]	984 [446]	992 [450]
Net Weight Ibs. [kg]	1021 [463]	992 [450] 1029 [467]	1021 [463]	992 [450] 1029 [467]
Ship Weight lbs. [kg]	1021 [403]	1023 [407]	1021 [403]	1023 [407]

See Page 19 for Notes.

NOM. SIZES 10 TON [35.1 kW] ASHRAE 90.1-2007 COMPLIANT MODELS

Model RLHL- Series	D120CL	D120CM	D120DL	D120DM
Cooling Performance ¹				CONTINUED →
Gross Cooling Capacity Btu [kW]	124,000 [36.33]	124,000 [36.33]	124,000 [36.33]	124,000 [36.33]
EER/SEER2	12.5/NA	12.5/NA	12.5/NA	12.5/NA
Nominal CFM/AHRI Rated CFM [L/s]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]	4000/3575 [1888/1687]
AHRI Net Cooling Capacity Btu [kW]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]	120,000 [35.16]
Net Sensible Capacity Btu [kW]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]	87,600 [25.67]
Net Latent Capacity Btu [kW]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]	32,400 [9.49]
IEER3	13.8	13.8	13.8	13.8
Net System Power kW	9.62	9.62	9.62	9.62
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB)4	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	
			. ,	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]	15.75 [1.46]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
		• •		
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Single	Single	Single	Single
No. Motors	1	1	1	1
Motor HP	2	3	2	3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	56	56
Potable Water Heat Recovery				
Heat Exchanger Type	Vented Double-Wall Flat Plate	Vented Double-Wall Flat Plate	Vented Double-Wall Flat Plate	Vented Double-Wall Flat Plate
Material	Cu Brazed Stainless Steel	Cu Brazed Stainless Steel	Cu Brazed Stainless Steel	Cu Brazed Stainless Steel
No. Flat Plates	50	50	50	50
Unit Water Connections No./Size in. [mm]	2/1.625 [41.3]	2/1.625 [41.3]	2/1.625 [41.3]	2/1.625 [41.3]
Water Pump - Type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
Housing Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
GPM [L/s]	30 [1.89]	30 [1.89]	30 [1.89]	30 [1.89]
Head Pressure ft. H20 [kPa]	25 [74.7]		25 [74.7]	25 [74.7]
Motor HP		25 [74.7]		
	1/3	1/3	1/3	1/3
Motor RPM	3450	3450	3450	3450
Filter - Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(3)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]	(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]	(3)2x18x18 [51x457x457] (3)2x18x24 [51x457x610]
(,	(3)2x18x24 [51x457x610]	(O)EXTOXET TO TX TO TX TO T		
Refrigerant Charge Oz. [g]	(3)2X18X24 [51X457X610] 155/170 [4394/4820]	155/170 [4394/4820]	155/170 [4394/4820]	155/170 [4394/4820]
	. ,			
Refrigerant Charge Oz. [g]	. ,			

See Page 19 for Notes.

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

GROSS SYSTEMS PERFORMANCE DATA-C120

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4800 [2265]	3600 [1699]	3200 [1510]	4800 [2265]	3600 [1699]	3200 [1510]	4800 [2265]	3600 [1699]	3200 [1510]
		DR ①	0.11	0.05	0.03	0.11	0.05	0.03	0.11	0.05	0.03
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	146.9 [43.0] 88.9 [26.1] 7.6	138.5 [40.6] 77.0 [22.6] 7.4	135.7 [39.8] 73.0 [21.4] 7.3	138.9 [40.7] 106.4 [31.2] 7.5	130.9 [38.4] 92.1 [27.0] 7.3	128.3 [37.6] 87.3 [25.6] 7.2	132.6 [38.9] 120.3 [35.3] 7.5	125.0 [36.6] 104.1 [30.5] 7.2	122.5 [35.9] 98.7 [28.9] 7.2
0	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	144.2 [42.2] 89.0 [26.1] 8.0	135.9 [39.8] 77.0 [22.6] 7.8	133.2 [39.0] 73.0 [21.4] 7.7	136.1 [39.9] 106.5 [31.2] 7.9	128.4 [37.6] 92.2 [27.0] 7.7	125.8 [36.9] 87.4 [25.6] 7.6	129.9 [38.1] 120.4 [35.3] 7.8	122.4 [35.9] 104.2 [30.5] 7.6	120.0 [35.2] 98.8 [29.0] 7.5
Ŭ T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	141.2 [41.4] 88.6 [26.0] 8.4	133.2 [39.0] 76.6 [22.5] 8.1	130.5 [38.2] 72.7 [21.3] 8.1	133.2 [39.0] 106.1 [31.1] 8.3	125.6 [36.8] 91.8 [26.9] 8.1	123.0 [36.1] 87.0 [25.5] 8.0	126.9 [37.2] 120.0 [35.2] 8.2	119.7 [35.1] 103.8 [30.4] 8.0	117.3 [34.4] 98.4 [28.8] 7.9
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	138.1 [40.5] 87.6 [25.7] 8.8	130.2 [38.1] 75.8 [22.2] 8.5	127.6 [37.4] 71.9 [21.1] 8.5	130.0 [38.1] 105.1 [30.8] 8.7	122.6 [35.9] 91.0 [26.7] 8.5	120.1 [35.2] 86.3 [25.3] 8.4	123.8 [36.3] 119.1 [34.9] 8.6	116.7 [34.2] 103.0 [30.2] 8.4	114.3 [33.5] 97.7 [28.6] 8.3
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	134.7 [39.5] 86.2 [25.3] 9.2	127.0 [37.2] 74.6 [21.9] 9.0	124.4 [36.5] 70.7 [20.7] 8.9	126.7 [37.1] 103.7 [30.4] 9.2	119.4 [35.0] 89.7 [26.3] 8.9	117.0 [34.3] 85.1 [24.9] 8.8	120.4 [35.3] 117.6 [34.5] 9.1	113.5 [33.3] 101.8 [29.8] 8.8	111.2 [32.6] 96.5 [28.3] 8.7
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	131.1 [38.4] 84.3 [24.7] 9.7	123.6 [36.2] 72.9 [21.4] 9.4	121.1 [35.5] 69.1 [20.3] 9.4	123.1 [36.1] 101.8 [29.8] 9.6	116.1 [34.0] 88.1 [25.8] 9.4	113.7 [33.3] 83.5 [24.5] 9.3	116.8 [34.2] 115.7 [33.9] 9.6	110.2 [32.3] 100.1 [29.3] 9.3	107.9 [31.6] 94.9 [27.8] 9.2
E M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	127.3 [37.3] 81.8 [24.0] 10.2	120.1 [35.2] 70.8 [20.8] 9.9	117.6 [34.5] 67.1 [19.7] 9.8	119.3 [35.0] 99.3 [29.1] 10.2	112.5 [33.0] 86.0 [25.2] 9.9	110.2 [32.3] 81.5 [23.9] 9.8	113.0 [33.1] 113.0 [33.1] 10.1	106.6 [31.2] 98.0 [28.7] 9.8	104.4 [30.6] 92.9 [27.2] 9.7
A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	123.3 [36.1] 78.9 [23.1] 10.8	116.3 [34.1] 68.3 [20.0] 10.5	113.9 [33.4] 64.7 [19.0] 10.4	115.3 [33.8] 96.4 [28.2] 10.7	108.7 [31.9] 83.4 [24.4] 10.4	106.5 [31.2] 79.1 [23.2] 10.3	109.0 [31.9] 109.0 [31.9] 10.6	102.8 [30.1] 95.5 [28.0] 10.3	100.7 [29.5] 90.5 [26.5] 10.2
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	119.1 [34.9] 75.5 [22.1] 11.3	112.3 [32.9] 65.3 [19.1] 11.0	110.0 [32.2] 61.9 [18.1] 10.9	111.1 [32.5] 93.0 [27.2] 11.3	104.7 [30.7] 80.4 [23.6] 10.9	102.6 [30.1] 76.3 [22.3] 10.8	104.8 [30.7] 104.8 [30.7] 11.2	98.8 [29.0] 92.5 [27.1] 10.9	96.8 [28.4] 87.7 [25.7] 10.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	114.7 [33.6] 71.5 [21.0] 11.9	108.1 [31.7] 61.9 [18.1] 11.6	105.9 [31.0] 58.7 [17.2] 11.5	106.6 [31.2] 89.0 [26.1] 11.9	100.5 [29.5] 77.0 [22.6] 11.5	98.5 [28.9] 73.0 [21.4] 11.4	100.4 [29.4] 100.4 [29.4] 11.8	94.6 [27.7] 89.1 [26.1] 11.4	92.7 [27.2] 84.5 [24.8] 11.3
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	110.0 [32.2] 67.1 [19.7] 12.6	103.7 [30.4] 58.1 [17.0] 12.2	101.6 [29.8] 55.0 [16.1] 12.1	102.0 [29.9] 84.6 [24.8] 12.5	96.2 [28.2] 73.2 [21.4] 12.1	94.2 [27.6] 69.4 [20.3] 12.0	95.7 [28.0] 95.7 [28.0] 12.4	90.2 [26.4] 85.2 [25.0] 12.0	88.4 [25.9] 80.8 [23.7] 11.9

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA – D120

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4800 [2265]	3575 [1687]	3200 [1510]	4800 [2265]	3575 [1687]	3200 [1510]	4800 [2265]	3575 [1687]	3200 [1510]
		DR ①	0.1	0.04	0.02	0.1	0.04	0.02	0.1	0.04	0.02
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	153.8 [45.1] 96.5 [28.3] 7.0	144.8 [42.4] 83.2 [24.4] 6.8	142.0 [41.6] 79.1 [23.2] 6.8	145.6 [42.7] 114.0 [33.4] 7.0	137.1 [40.2] 98.3 [28.8] 6.8	134.5 [39.4] 93.5 [27.4] 6.7	140.5 [41.2] 132.0 [38.7] 6.9	132.3 [38.8] 113.8 [33.4] 6.7	129.7 [38.0] 108.2 [31.7] 6.6
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	150.4 [44.1] 94.5 [27.7] 7.4	141.6 [41.5] 81.4 [23.9] 7.2	138.9 [40.7] 77.4 [22.7] 7.1	142.3 [41.7] 112.0 [32.8] 7.4	134.0 [39.3] 96.6 [28.3] 7.1	131.4 [38.5] 91.9 [26.9] 7.1	137.2 [40.2] 130.0 [38.1] 7.3	129.1 [37.8] 112.1 [32.8] 7.1	126.6 [37.1] 106.6 [31.2] 7.0
O U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	147.0 [43.1] 92.5 [27.1] 7.8	138.4 [40.6] 79.7 [23.4] 7.6	135.7 [39.8] 75.8 [22.2] 7.5	138.9 [40.7] 110.1 [32.3] 7.8	130.7 [38.3] 94.9 [27.8] 7.5	128.2 [37.6] 90.2 [26.4] 7.5	133.7 [39.2] 128.0 [37.5] 7.7	125.9 [36.9] 110.4 [32.3] 7.5	123.5 [36.2] 105.0 [30.8] 7.4
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	143.5 [42.1] 90.6 [26.5] 8.3	135.1 [39.6] 78.1 [22.9] 8.0	132.5 [38.8] 74.3 [21.8] 8.0	135.4 [39.7] 108.2 [31.7] 8.2	127.4 [37.3] 93.3 [27.3] 8.0	125.0 [36.6] 88.7 [26.0] 7.9	130.2 [38.2] 126.1 [37.0] 8.2	122.6 [35.9] 108.7 [31.9] 7.9	120.3 [35.2] 103.4 [30.3] 7.8
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	139.9 [41.0] 88.8 [26.0] 8.7	131.7 [38.6] 76.5 [22.4] 8.5	129.2 [37.9] 72.8 [21.3] 8.4	131.8 [38.6] 106.3 [31.2] 8.7	124.1 [36.4] 91.7 [26.9] 8.4	121.7 [35.7] 87.2 [25.5] 8.3	126.7 [37.1] 124.3 [36.4] 8.6	119.2 [34.9] 107.2 [31.4] 8.4	117.0 [34.3] 101.9 [29.9] 8.3
L B	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	136.3 [39.9] 87.0 [25.5] 9.2	128.3 [37.6] 75.0 [22.0] 9.0	125.8 [36.9] 71.3 [20.9] 8.9	128.1 [37.6] 104.5 [30.6] 9.2	120.6 [35.3] 90.1 [26.4] 8.9	118.3 [34.7] 85.7 [25.1] 8.8	123.0 [36.0] 122.5 [35.9] 9.1	115.8 [33.9] 105.6 [31.0] 8.8	113.6 [33.3] 100.5 [29.4] 8.8
E M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	132.5 [38.8] 85.3 [25.0] 9.8	124.8 [36.6] 73.5 [21.5] 9.5	122.4 [35.9] 69.9 [20.5] 9.4	124.4 [36.5] 102.8 [30.1] 9.7	117.1 [34.3] 88.6 [26.0] 9.4	114.9 [33.7] 84.3 [24.7] 9.3	119.3 [35.0] 119.3 [35.0] 9.6	112.3 [32.9] 104.1 [30.5] 9.4	110.1 [32.3] 99.0 [29.0] 9.3
A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	128.7 [37.7] 83.6 [24.5] 10.3	121.2 [35.5] 72.1 [21.1] 10.0	118.9 [34.8] 68.5 [20.1] 9.9	120.6 [35.3] 101.2 [29.6] 10.2	113.5 [33.3] 87.2 [25.6] 9.9	111.4 [32.6] 82.9 [24.3] 9.8	115.5 [33.8] 115.5 [33.8] 10.2	108.7 [31.9] 102.7 [30.1] 9.9	106.6 [31.2] 97.7 [28.6] 9.8
R E °F I°Cl	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	124.8 [36.6] 82.0 [24.0] 10.9	117.5 [34.4] 70.7 [20.7] 10.5	115.3 [33.8] 67.2 [19.7] 10.4	116.7 [34.2] 99.6 [29.2] 10.8	109.9 [32.2] 85.8 [25.2] 10.5	107.8 [31.6] 81.6 [23.9] 10.4	111.6 [32.7] 111.6 [32.7] 10.7	105.0 [30.8] 101.3 [29.7] 10.4	103.0 [30.2] 96.4 [28.2] 10.3
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	120.9 [35.4] 80.4 [23.6] 11.5	113.8 [33.3] 69.3 [20.3] 11.1	111.6 [32.7] 66.0 [19.3] 11.0	112.8 [33.0] 98.0 [28.7] 11.4	106.1 [31.1] 84.5 [24.8] 11.1	104.1 [30.5] 80.4 [23.5] 11.0	107.6 [31.5] 107.6 [31.5] 11.3	101.3 [29.7] 100.0 [29.3] 11.0	99.4 [29.1] 95.1 [27.9] 10.9
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	116.8 [34.2] 79.0 [23.1] 12.1	110.0 [32.2] 68.1 [19.9] 11.7	107.9 [31.6] 64.7 [19.0] 11.6	108.7 [31.9] 96.5 [28.3] 12.0	102.3 [30.0] 83.2 [24.4] 11.7	100.4 [29.4] 79.1 [23.2] 11.6	103.6 [30.4] 103.6 [30.4] 12.0	97.5 [28.6] 97.5 [28.6] 11.6	95.6 [28.0] 93.9 [27.5] 11.5

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS WATER HEATING CAPACITY-C120

					ENTERING INDO	OR AIR @ 80°	F [26.7°C] dbE				
		wbE		71°F [15.5°C]			67°F [19.4°C]			63°F [19.4°C]	
	C	FM [L/s]	4800 [2265]	3600 [1699]	3200 [1510]	4800 [2265]	3600 [1699]	3200 [1510]	4800 [2265]	3600 [1699]	3200 [1510]
	75 [23.9]	Total BTUH [kW] Power	168.4 [49.4] 8.8	166.7 [48.9] 8.0	161.7 [47.4] 7.6	158.0 [46.3] 8.6	156.4 [45.8] 7.8	151.7 [44.5] 7.4	147.5 [43.2] 8.5	146.0 [42.8] 7.7	141.6 [41.5] 7.3
O U T	80 [26.7]	Total BTUH [kW] Power	166.1 [48.7] 9.3	164.5 [48.2] 8.5	159.6 [46.8] 8.1	155.7 [45.6] 9.1	154.2 [45.2] 8.3	149.6 [43.8] 7.9	145.2 [42.6] 9.0	143.8 [42.1] 8.2	139.5 [40.9] 7.8
L E T	85 [29.4]	Total BTUH [kW] Power	163.9 [48.0] 9.7	162.3 [47.6] 8.9	157.4 [46.1] 8.5	153.5 [45.0] 9.5	152.0 [44.5] 8.7	147.4 [43.2] 8.3	143.0 [41.9] 9.4	141.6 [41.5] 8.6	137.4 [40.3] 8.2
W	90 [32.2]	Total BTUH [kW] Power	161.7 [47.4] 10.1	160.1 [46.9] 9.3	155.3 [45.5] 8.9	151.3 [44.3] 9.9	149.8 [43.9] 9.1	145.3 [42.6] 8.7	140.8 [41.3] 9.8	139.4 [40.9] 9.0	135.2 [39.6] 8.6
E R	95 [35.0]	Total BTUH [kW] Power	159.5 [46.7] 10.5	157.9 [46.3] 9.7	153.2 [44.9] 9.3	149.1 [43.7] 10.3	147.6 [43.3] 9.5	143.2 [42.0] 9.1	138.6 [40.6] 10.2	137.2 [40.2] 9.4	133.1 [39.0] 9.0
T	100 [37.8]	Total BTUH [kW] Power	157.3 [46.1] 11.0	155.7 [45.6] 10.2	151.0 [44.3] 9.8	146.9 [43.1] 10.8	145.4 [42.6] 10.0	141.0 [41.3] 9.6	136.4 [40.0] 10.7	135.0 [39.6] 9.9	131.0 [38.4] 9.5
M P E	105 [40.6]	Total BTUH [kW] Power	155.0 [45.4] 11.4	153.5 [45.0] 10.6	148.9 [43.6] 10.2	144.6 [42.4] 11.2	143.2 [42.0] 10.4	138.9 [40.7] 10.0	134.1 [39.3] 11.1	132.8 [38.9] 10.3	128.8 [37.7] 9.9
R A T	110 [43.3]	Total BTUH [kW] Power	152.8 [44.8] 11.8	151.3 [44.3] 11.0	146.8 [43.0] 10.6	142.4 [41.7] 11.6	141.0 [41.3] 10.8	136.8 [40.1] 10.4	131.9 [38.7] 11.5	130.6 [38.3] 10.7	126.7 [37.1] 10.3
U R E	115 [46.1]	Total BTUH [kW] Power	150.6 [44.1] 12.3	149.1 [43.7] 11.5	144.6 [42.4] 11.1	140.2 [41.1] 12.1	138.8 [40.7] 11.3	134.6 [39.4] 10.9	129.7 [38.0] 12.0	128.4 [37.6] 11.2	124.5 [36.5] 10.8
°F [°C]	120 [48.9]	Total BTUH [kW] Power	148.4 [43.5] 12.7	146.9 [43.1] 11.9	142.5 [41.8] 11.5	138.0 [40.4] 12.5	136.6 [40.0] 11.7	132.5 [38.8] 11.3	127.5 [37.4] 12.4	126.2 [37.0] 11.6	122.4 [35.9] 11.2
	125 [51.7]	Total BTUH [kW] Power	146.1 [42.8] 13.1	144.7 [42.4] 12.3	140.4 [41.1] 11.9	135.7 [39.8] 12.9	134.4 [39.4] 12.1	130.4 [38.2] 11.7	125.2 [36.7] 12.8	124.0 [36.3] 12.0	120.3 [35.3] 11.6

dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Power —KW input

GROSS WATER HEATING CAPACITY-D120

				Ī	NTERING INDO	OR AIR @ 80°	F [26.7°C] dbE				
		wbE		71°F [15.5°C]			67°F [19.4°C]			63°F [19.4°C]	
	C	FM [L/s]	4800 [2265]	3550 [1675]	3200 [1510]	4800 [2265]	3550 [1675]	3200 [1510]	4800 [2265]	3550 [1675]	3200 [1510]
	75 [23.9]	Total BTUH [kW] Power	100.5 [29.5] 2.7	98.5 [28.9] 2.7	98.0 [28.7] 2.7	96.5 [28.3] 2.7	92.5 [27.1] 2.7	92.5 [27.1] 2.7	96.5 [28.3] 2.7	92.4 [27.1] 2.7	89.3 [26.2] 2.7
O U T	80 [26.7]	Total BTUH [kW] Power	99.0 [29.0] 2.8	97.1 [28.5] 2.8	96.6 [28.3] 2.8	95.3 [27.9] 2.8	91.3 [26.8] 2.8	91.3 [26.8] 2.8	95.3 [27.9] 2.8	91.4 [26.8] 2.8	88.4 [25.9] 2.8
L E T	85 [29.4]	Total BTUH [kW] Power	97.4 [28.5] 3.0	95.6 [28.0] 3.0	95.2 [27.9] 3.0	94.1 [27.6] 3.0	90.2 [26.4] 3.0	90.1 [26.4] 3.0	94.1 [27.6] 3.0	90.4 [26.5] 3.0	87.5 [25.6] 3.0
W	90 [32.2]	Total BTUH [kW] Power	95.9 [28.1] 3.2	94.2 [27.6] 3.2	93.8 [27.5] 3.2	93.0 [27.3] 3.2	89.1 [26.1] 3.2	88.9 [26.1] 3.2	93.0 [27.3] 3.2	89.4 [26.2] 3.2	86.6 [25.4] 3.1
E R	95 [35.0]	Total BTUH [kW] Power	94.4 [27.7] 3.4	92.8 [27.2] 3.4	92.4 [27.1] 3.4	91.8 [26.9] 3.4	88.0 [25.8] 3.4	87.7 [25.7] 3.4	91.8 [26.9] 3.4	88.4 [25.9] 3.4	85.7 [25.1] 3.3
T E	100 [37.8]	Total BTUH [kW] Power	92.8 [27.2] 3.6	91.4 [26.8] 3.6	91.0 [26.7] 3.6	90.6 [26.6] 3.6	86.9 [25.5] 3.6	86.6 [25.4] 3.6	90.6 [26.6] 3.6	87.4 [25.6] 3.6	84.8 [24.9] 3.5
M P E	105 [40.6]	Total BTUH [kW] Power	91.3 [26.8] 3.8	90.0 [26.4] 3.8	89.6 [26.3] 3.8	89.5 [26.2] 3.8	85.7 [25.1] 3.8	85.4 [25.0] 3.8	89.5 [26.2] 3.8	86.4 [25.3] 3.8	83.9 [24.6] 3.8
R A T	110 [43.3]	Total BTUH [kW] Power	89.8 [26.3] 4.0	88.6 [26.0] 4.0	88.2 [25.8] 4.0	88.3 [25.9] 4.0	84.6 [24.8] 4.0	84.2 [24.7] 4.1	88.3 [25.9] 4.0	85.4 [25.0] 4.0	83.0 [24.3] 4.0
U R E	115 [46.1]	Total BTUH [kW] Power	88.2 [25.8] 4.3	87.1 [25.5] 4.3	86.8 [25.4] 4.3	87.1 [25.5] 4.3	83.5 [24.5] 4.3	83.0 [24.3] 4.3	87.1 [25.5] 4.3	84.4 [24.7] 4.3	82.1 [24.1] 4.3
°F [°C]	120 [48.9]	Total BTUH [kW] Power	86.7 [25.4] 4.6	85.7 [25.1] 4.6	85.4 [25.0] 4.6	85.9 [25.2] 4.6	82.4 [24.1] 4.6	81.8 [24.0] 4.7	85.9 [25.2] 4.6	83.4 [24.4] 4.6	81.2 [23.8] 4.6
	125 [51.7]	Total BTUH [kW] Power	85.2 [25.0] 4.9	84.3 [24.7] 5.0	84.0 [24.6] 5.0	84.8 [24.9] 4.9	81.2 [23.8] 5.0	80.6 [23.6] 5.0	84.8 [24.9] 4.9	82.4 [24.1] 5.0	80.3 [23.5] 5.0

dbE —Entering air dry bulb

Total —Total capacity x 1000 BTUH

wbE—Entering air wet bulb

Power —KW input

GROSS WATTS 2ND STAGE kW ADD FOR MIXED MODE OPERATION-D120

				ENTI	ERING INDOOR A	IR @ 80°F [26.7°	°C] dbE			
	wbE		71°F [15.5°C]			67°F [19.4°C]			63°F [19.4°C]	
CF	M [L/s]	4800 [2265]	3550 [1675]	3200 [1510]	4800 [2265]	3550 [1675]	3200 [1510]	4800 [2265]	3550 [1675]	3200 [1510]
0 U T	75 [23.9]	3.9	3.8	3.7	3.8	3.7	3.7	3.8	3.7	3.7
T D 0 0 R	80 [26.7]	4.1	4.0	3.9	4.0	3.9	3.9	4.0	3.9	3.8
O R	85 [29.4]	4.3	4.2	4.1	4.2	4.1	4.1	4.2	4.1	4.0
D R Y	90 [32.2]	4.5	4.4	4.3	4.5	4.3	4.3	4.4	4.3	4.3
B U	95 [35.0]	4.7	4.6	4.6	4.7	4.6	4.5	4.7	4.5	4.5
L B	100 [37.8]	5.0	4.8	4.8	4.9	4.8	4.8	4.9	4.8	4.7
T E M	105 [40.6]	5.2	5.1	5.0	5.2	5.0	5.0	5.2	5.0	5.0
P E R	110 [43.3]	5.5	5.3	5.3	5.5	5.3	5.3	5.4	5.3	5.2
A T	115 [46.1]	5.8	5.6	5.6	5.8	5.6	5.5	5.7	5.5	5.5
Ü R E	120 [48.9]	6.1	5.9	5.9	6.1	5.9	5.8	6.0	5.8	5.8
°F [°C]	125 [51.7]	6.4	6.2	6.2	6.4	6.2	6.1	6.3	6.1	6.1

The Kw values in the table are added to the water heating watt values when unit is operating in a mixed mode operation (first stage providing water heating, second stage in cooling mode).

AIRFLOW PERFORMANCE—10 TON [35.1 kW]—60 HZ DOWNFLOW

Model RILHI-CT20 Voltage 2083290, 466 — 3 Phase 60 Hz External Static Pressure—Inches of Walter (RPa) Model RILHI-CT20 Lo. 2, Lo. 6] Lo. 2, Lo. 2																						
Mode R.H. -C.120 O.S. 1.05 O.S. 1.05 O.S. 1.12 O.S. 1.			.50]	M	2671	2758	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
C. S. I. 12 D. S. I. 1. 17 D. S. I. 1. 18 D. S. II. 18 D. S. III. 18			2.0[3PM	1136	1139	1	1	1	1	1	1	1	1	I	1	1	1	1	1	I	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz					. 221	- 989	725	820	918	021	-	Ι	П	Ι	1	П	-	ı	-	1	_	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			.16:	PM	112 2	116 2	120 2	125 2	131 2		1	ı		ī	1	П	1	ı	1	ī	1	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			5]		33 1	17 1	.02	1 86		1 96			Ė	Ė	Ė	Ė	÷	_	_	÷	·	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			8[.4	M	88 24	92 25	97 26	02 26	09 27	16 28	23 30	32 31	Ė		Ė	Ė	÷	_	÷	÷	·	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			<u>-</u>		10	10	38 10	30 11	75 11	.2 11	30 11;	39 11:			i i	Ė	-	_	Ė	Ė		
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			[.42	M .	2 231	7 240	3 248	3 258	3 267	3 277	2 288	1 298					-	1	_	-	-	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			1.7		106	106	1073	1079	108	1093	110	111.		113.	Ĺ	,	-	1	-		1	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			.40]	٨	2209	2290	2375	2465	2559	2658	2761	2868	2980	9608	3217	3342	1	1	1	1	1	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			1.6[3PM	1037	1042	1048	1055	1062	1071	1079	1089	1099	1110	1122	1134	1	ı	1	1	1	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			[2		102	181	. 592	353	446	243	. 249	. 12/	. 298	. 926	960		348	ı	_	1	1	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			5[.3		10 2	16 2	23 2	30 2	38 2	47 2	57 2	67 2	78 2	89 2	01	14 3	28 3		_	_		
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			-	Æ	10	76 10	9 10	10	37 10	33 10	33 10	37 10	10	30 10	78	11 00	11 11				Ė	
Colon-3 Phase 60 Hz Colon-2 Phase 61 Hz			[.35	_	1 199) 207	7 215	5 224	1 233	3 243	3 253	1 263	5 274	7 286) 297	1 310	3 322	3 335	3 346	<u> </u>	-	
Columbia			1.4	RPN				100	101	1023	1033	104	105	1067	1080	109	1108	1123	1138		1	
Columbia			.32]	8	1898	1975	2056	2141	2231	2325	2424	2527	2635	2747	2863	2984	3110	3239	3373	3512	1	
Columbia			1.3	₹PM	926	963	971	980	686	666	6001	1020	1032	1045	1058	1072	1087	1103	1119		1	
Columbia		kPa]	0		801	228	926	040	129		319	420	- 272	- 289	752	872	- 966	124	. 222		535	
Columbia		iter [.2 [.3	М	1 8 1	136	144	53 2	63 2	73 2	85 2	96 2	00 2	122 2	36 2	151	166 2	82 3	8 3	16 3	34 3	
Name Color		of Wa											22 10	31 10	15 10	33 10	35 10	12 10	13 10	79 11	19 11	
Name Color		hes ([.27			8 178	7 186	6 19	7 203	8 212	9 22-	2 23-	5 242	9 253	3 26	8 276	4 288	1 30	8 31	6 327	5 34	
Name Color		- -	Ξ	RPI											101	102	104	106	107	109	111	
Name Color		sure-	.25]		1618	1691	1767	1849	1934	2024	2118	2217	2321	2428	2540	2657	8227	2903	808	3168	3306	
Name		Pres	1.0	RPM	870	879	888	899	910	921	934	947	096	975	066	1005	1022	1039	1057	1075	1095	
60 Hz 0.5 [.12] 0.7 [.17] RPM W RPM W FPM FPM W FPM FPM FPM		tatic		M	532	603	829	128	842	931	2024	121	223	329	9440	5255	674	2798	1367	0908	197	
60 Hz 0.5 [.12] 0.7 [.17] RPM W RPM W FPM FPM W FPM FPM FPM		nal S	.9		840	850 1	860	871 1	882 1	894	2 206	921	935	920 2	996	982	666	017	035 2	054	074	
60 Hz 0.5 [.12] 0.7 [.17] RPM W RPM W FPM FPM W FPM FPM FPM		Exter	<u> </u>															1 1	24 1	55 1	91 1	
60 Hz 0.5 [.12] 0.7 [.17] RPM W RPM W FPM FPM W FPM FPM FPM			8[.2		10 17	20 15	30 15			87 18	80 16	94 20	09 21	25 22	41 23	58 24	75 25	94 26	13 28	32 26	53 30	
LO.—3 Phase 60 Hz O.5 [.12] O.6 [.15] RPM W RPM W 715 1221 77 1294 775 1286 758 1360 739 1356 770 1431 752 1430 783 1507 766 1508 796 1586 796 1586 1759 1671 821 1770 840 1852 828 1866 872 2052 845 1966 872 2052 863 2071 890 2189 941 2535 966 2628 942 2535 966 2628 963 2662 987 2757 983 2662 987 2757 983 2662 987 2757 983 2662 1008 288																			4 10	4 10;	9 10	
LO.—3 Phase 60 Hz O.5 [.12] O.6 [.15] RPM W RPM W 715 1221 77 1294 775 1286 758 1360 739 1356 770 1431 752 1430 783 1507 766 1508 796 1586 796 1586 1759 1671 821 1770 840 1852 828 1866 872 2052 845 1966 872 2052 863 2071 890 2189 941 2535 966 2628 942 2535 966 2628 963 2662 987 2757 983 2662 987 2757 983 2662 987 2757 983 2662 1008 288			[.17	8	137	3 143	151	2 158	<u> 166</u>	3 175	3 184	7 193	3 203	3 214	3 224	3 236	247) 259) 272) 285	298	
Model RLHL-C120 Voltage 208/230, 460 — 3 Phase 60 Hz Flow CFM IL/s M. RPM W RPM R			0.7	RPN	77	789	.08	81							91					101(103-	
Model RLHL-C120	보		5	×	1294	1360	1431	1507	1586	1671	1759	1852	1950	2052	2158	2269	2384	2504	2628	2757	2890	
Model RLHL-C120	se 60		0.6	₹ЫМ	747	758	770	783	962	810	824	840	856	872	890	806	927	946	996	987	1008	
Model RLHL-C120	늄		[2]	W	-	286			208	591	829	220	998	996	071	181	294	413	535	662	794	
Model RLHL-C120	Ï		.5	PM	15 1	.56 1	39 1	.25	99.	80	1 96	11	28	45 1	63	82 2	01 2	21 2	42 2	63 2	85 2	
Model RLHL-C120 Voltage 2082230	, 4 6		<u></u>	V R	52 7	16 7	84 7	2 99	33 7	15 7	2 00		85 8	84 8	88		3 80	25 6	46 5	72 8	02 5	و
Model RLHL-C120	3230		4[.1	M	2 11	4 12	7 12	1 13	5 14	0 15	6 16	3 16	0 17	8 18	6 19	5 20	5 22	6 23	7 24	9 25	2 27	Je Pi
Model RLHL-C120 Voltage Flow CFM LL/s Graph O.1 [o21] O.2 [o51] O.3 [o7]	e 208		ò	RP	-		5 70	3 72	2 73	2 75	9/ 🤋	5 78	3 80	3 81	83		5 87	1 89	91	5 93	3 96	of h
Model RLHL-C120 Visual Plank Pla	oltag		[.07	8	-	-				144		161	170	180			212	224	236	248	261	richt
Mode RI-HI-C720 Flow O.1 C.21 O.2 C.50	>		0.3	RPM	1	1	675	689	704	720	736	753	771	789			849		892	914	938	dvivo
Model RLHI-CFM L/S CFM L/S CFM L/S RPM W RPM S200 1557 — — — 3400 1657 — — — 3400 1669 — — — 3500 1662 — — — — 3500 1662 — — — — 3500 1669 — — — — — 3500 1689 — — — — — 3500 1689 — — — 673 3500 1746 — — — — 689 3900 1746 — — — 689 3900 1748 — — 689 3900 1789 575 1758 760 4200 1989 771 1669 761 4200 1982 751 1758 780 4200 2026 772 1862 801 4400 2076 734 1970 822 4500 2265 888 2446 913 866 4300 2265 888 2446 913 910 926 9300	22		.05]	W	1	1	1	1	1294	1372	1455	1543	1634	1731	1831	1936	2046	2160	2278	2401	2528	M
Model Ri Model Ri Flow CFW L/s RPM W F RPM S200 1510	₹		0.2	РM	Ι	Ι	ı	Τ	673	689	902	723	742	192	780	801	822	844	998	889	913	Jul P
Mod Flow CFM L/s RPM 1.0.1	풀		[2]	W	_	_	1	_			388	174	264	928	822	362	026	382	199	320	146	ly hol
Air Flow CFM [L/S] Rit 3200 [150] - 3300 [1557] - 3400 [1604] - 3500 [1604] - 3500 [1608] - 3500 [1608] - 3600 [1608] - 3600 [1608] - 3600 [1608] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [1908] - 3600 [10	Š		1.0	Mc		Ė				\vdash	75 1;	93 1	12 1	31 16	51 1.	72 1	94 1	16 2	39 2	53 2.	88 2	loff c
Air Flow CFM IL/ 3200 [15] 3300 [15] 3300 [15] 3400 [16] 3500 [16] 3500 [17] 4400 [18] 4400 [20]			0	R]	_				.9 [E	10] 6	18] 7	15] 7	12] 7!	.2 [6:	76] 7	3] 8	71] 8,	8] 8(15] 8	Jriva
CFF 4 400 4		A	<u> </u>	/ - -	1151	1155	0 [160	7 [165	0 [169	7[174	1179) [184	1188	1193	1198) [202	7 [207	7 [212	7 [217) [221	1 [226	1 1
		_	- 6	5	3200	3300	3400	3200	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500	4600	4700	4800	L

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	894
				2	943
	37.1]	Н	14	4	366
M	3.0 [2237.1	BK65H	1VP-44	3	1041
				2	1089
				1	1138
				9	699
				9	704
	2.0 [1491.4]	ВК90Н	1VP-44	4	682
	2.0 [1	BK	1VF	8	277
				2	810
				1	845
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum or maximum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

					COMPL	COMPONENT AIRFLOW RESISTANCE	
Airlow CFM [L/s]	AIR	AIRFLOW CORRECTION FACTORS	**	Wet Coil	Downflow Economizer RA Damper Open	Concentric Grill RXRN-AA61 or RXRN-AA71 & Transition RXMC-CE05	Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06
	Total MBH	Sensible MBH	Power kW		Resist	Resistance — Inches of Water [kPa]	
3200 [1510]	0.98	0.92	0.99	0.07 [.02]	0.09 [.02]	I	1
3400 [1604]	0.99	96.0	0.99	0.07 [.02]	0.10 [.02]	I	I
3600 [1699]	1.00	1.00	1.00	0.08 [.02]	0.11 [.03]	0.16 [.04]	1
3800 [1793]	1.01	1.05	1.01	0.08 [.02]	0.12 [.03]	0.19 [.05]	ı
4000 [1888]	1.02	1.09	1.01	0.09 [.02]	0.13 [.03]	0.21 [.05]	I
4200 [1982]	1.03	1.13	1.02	0.09 [.02]	0.14 [.03]	0.24 [.06]	I
4400 [2076]	1.04	1.17	1.02	0.10 [.02]	0.15 [.04]	0.27 [.07]	I
4600 [2171]	1.05	1.21	1.03	0.10 [.02]	0.16 [.04]	0.30 [.07]	0.30 [.07]
4800 [2265]	1.06	1.25	1.03	0.11 [.03]	0.17 [.04]	0.33 [.08]	0.32 [.08]
Aultiply correction factor times gross performance data — resulting sensible capacity cannot exceed total capacity,	gross performance dat	ta — resulting sensible cap.	acity cannot exceed to	tal capacity.		0[]	[] Designates Metric Conversions

[] Designates Metric Conversions

AIRFLOW PERFORMANCE—10 TON [35.1 kW]—60 HZ DOWNFLOW

		5	~	329	130	337	348	,64	385	11	П	1	ı	ı	ı	ı	ı	Ι	Т	1	
		.0 [.5	PM	129 23	136 24	143 25	150 26	158 27	165 28	172 30	<u>.</u>		İ	<u>.</u>	_	i	_	<u>.</u>	_		
		7] 2	N R	47 11	46 11	49 11	58 11	11 11	89 11	113 11			· 	_	_	1	_	· 	_	_	
		9.14	PM \	109 22	116 23	123 57	131 25	138 26	146 27	154 29	162 30	.20 3-	<u> </u>	<u>.</u> T	<u>.</u> T	İ	<u>.</u> _	İ	<u> </u>	· 	
		5.	N R	165 11	261 11	362 11	168 11	579 11	395 11	316 11	342 11)73 11			· 	1	_	· 	1		
		.8 [.4	PM \)87 2-	395 22	102 23	110 2	118 25	126 26	134 28	143 29	151 30	160 32	89 33	<u>.</u>	Ī	<u>.</u>	İ	1		
		2] 1	N)84 1(178 10	576 1-	380 1-	188	302 1-	720 1-	343 1-	371 1-	104 1-	243 1-	3386	3534 -	<u>.</u> 	<u>.</u> T	<u>.</u>	· 	
		7 [.4	М)65 20	73 2	181 22	189 23	197 24	106 26	14 27	23 28	32 26	41 3	20 3		89		_	_	_	
		-	N	104 10	102	91 10	92 10	108	.00 1.	24 1-	45 1-	1.4	1.	37 1-	1.8 1.	123 1-		3729 -	_	_	
		6 [.4	N N	142 20	151 20	129 21	167 22	176 23	185 25	194 26	03 27	12 28	21 30	30 31	40 32	49 32	59 3£	69 37	_	· 	
		7] 1	N B	325 10	113 10	10 10	205 10	308 10	117 10	30 10	348 1-	71 1.	399 1-	132 1	1.0	313 1-	191	14 1-			
		.5[.3	N N	119 11	128 20	136 2-	145 22	154 23	163 2	173 25	182 26	191 27	01 28	11 30	20 3-	30 33	40 3	51 36	61 37	71 36	
		5]	N	46 10	32 10	123 10	19 10	19 10	25 10	36 10	51 10	72 10	98 11	11 82	64 11	04 11	11 6	00 11	55 11	15 11	
		1.2[.30] 1.3[.32] 1.4[.35] 1.5[.37] 1.6[.40] 1.7[.42] 1.8[.45] 1.9[.47] 2.0[.50]	W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM	893 1539 919 1615 945 1691 970 1768 995 1846 1019 1925 1042 2004 1065 2084 1087 2165 1109 2247 1129 2329	980 1852 1004 1932 1028 2013 1051 2095 1073 2178 1095 2261 1116 2346 1136 2430	989 1940 1013 2023 1036 2107 1059 2191 1081 2276 1102 2362 1123 2449 1143 2537	950 1864 975 1948 999 2033 1022 2119 1045 2205 1067 2292 1089 2380 1110 2468 1131 2558 1150 2648	985 2044 1008 2131 1032 2219 1054 2308 1076 2398 1097 2488 1118 2579 1138 2671 1158 2764	1018 2235 1041 2325 1063 2417 1085 2509 1106 2602 1126 2695 1146 2789 1165 2885	957 2068 981 2159 1005 2250 1028 2343 1051 2436 1073 2530 1094 2624 1114 2720 1134 2816 1154 2913 1172 3011	992 2267 1016 2361 1038 2456 1060 2551 1082 2648 1103 2745 1123 2843 1143 2942 1162 3041	980 2284 1003 2380 1026 2476 1048 2574 1070 2672 1091 2771 1112 2871 1132 2971 1151 3073 1170 3174	991 2399 1014 2498 1037 2597 1059 2697 1080 2798 1101 2899 1121 3001 1141 3104 1160 3208	979 2419 1002 2519 1025 2620 1048 2722 1069 2825 1090 2928 1111 3032 1130 3137 1150 3243 1168 3349	991 2542 1014 2645 1036 2748 1058 2853 1080 2958 1100 3064 1120 3170 1140 3278 1159	979 2565 1003 2670 1026 2775 1048 2881 1069 2988 1090 3096 1111 3204 1130 3313 1149 3423 1168	968 2589 992 2695 1015 2802 1038 2910 1059 3019 1081 3128 1101 3238 1121 3349 1140 3461 1159 3573	981 2721 1005 2830 1027 2940 1049 3050 1071 3162 1092 3274 1112 3386 1132 3500 1151 3614 1169	994 2859 1017 2970 1040 3082 1062 3195 1083 3309 1103 3424 1123 3539 1142 3655 1161 3772	2888 1008 3001 1030 3115 1052 3230 1074 3346 1094 3462 1115 3579 1134 3697 1153 3815 1171 3934	
		2]	N R	6 89.	52 10	40 10	33 10	31 10	35 10	43 10	56 10	74 10	97 10	25 10	58 11	96 11	38 11	86 11	39 11	97 11	
		3 [.3	\ M	70 17	30 18	39 19	39 20	08 21	18 22	28 23	38 24	48 25	59 26	69 28	80 29	90 30	01 32	12 33	23 35	34 36	
	[Pa]	<u>-</u>	V RF	91 9.	1772 98	1858 98	48 99	44 10	45 10	50 10	61 10	76 10	97 10	22 10	53 10	88 10	28 11	74 11	24 11	79 11	
	External Static Pressure—Inches of Water [kPa]	2[.3	۱ M	12 16	955 17	965 18	75 19	35 20	995 2145	05 22	16 23	26 24	37 25	48 27	58 28	69 29	81 31	92 32	03 34	15 35	
	of Wa	7.	V RF	15 92			64 97			59 10	67 10	80 10	98 10	20 10	48 10	81 10	19 10	62 10	09 11	62 11	
	ches	1.1 [.27]	N	9 16	929 1693	940 1776	0 18	960 1957	971 2056	11 21	12 22	03 23	14 24	25 26	36 27	48 28	26 30	71 31	83 33	94 34	
	툿	<u></u>	/ RP	39 91						36 89	2173 96	84 10	99 10	19 10	45 10	75 10	10 10	50 10	95 10	46 10	
	essur	1.0 [.25]	N.	3 15	903 1615	914 1695	925 1781	935 1872	946 1967	20 20	968 21	10 22	1 23	02 25	14 26	26 27	38 29	49 30	62 31	74 33	
	tic Pr		V RP					_		78 95	-		01 96	19 10	42 10	70 10	02 10	40 10	82 10	30 10	
	al Sta	0.9 [.22]	۸ ا	866 1464	877 1537	888 1615	899 1698	910 1787	921 1880	932 1978	944 2081	955 2188	37 23	79 24	11 25	03 26	15 28	27 29	40 30	52 32	
	xtern	<u>.</u>	/ RP	98 06	1460 87								04 96		2440 96	55 10	95 10	30 10	70 10	15 10	
	_	0.8 [.20]		838 1390	849 14	1536	872 1617	883 1702	895 1793	907 1888	919 1989	1 2094	13 22	955 2320		79 25	32 26	05 28	17 29	30 31	
			V RPM	16 83	1385 84	58 861	36 87		07 89	00		e 00	76 80		38 86		36 68	21 10	59 10	01 10	
		7 [.17]	M W	810 1316	821 13	833 1458	845 1536	857 1619	869 1707	881 1800	893 1897	905 2000 931	917 2108 943 2204 967 2301	930 2221	943 2338 967	955 2461	38 25	31 27	34 28	08 30	
Z		0	V RPI	44 81	1309 82	1380 83	1455 84	1536 85	-	1712 88	1807 89	1907 90	2013 91	2123 93	2238 94	2358 95	2483 96	36 8197	2748 99	88 10	
e 60 F		0.6[.15]	RPM W	31 12	793 13	805 13	817 14	829 15	841 1621	854 17	866 18	879 19	892 20	905 21	918 22	931 23	944 24	92 26	971 27		
Phas			V RF	72 78	1235 79		.8 92		37 8	25 8	1717 86	15 8.	18 89	25 90	2138 9.	26 93		2506 98	2638 97	2664 961 2775 985	
<u>۾</u>		0.5[.12]	۱ Mc	52 11	764 12	776 1303	88 13	801 1454	14 15	26 16	839 17	52 18	92 16	79 20	892 21	06 22	919 2378	933 25	47 26	51 27	
), 460			N R	01 73	1161 7	1227 7	2 26	1372 8	23 8	38 8	1628 8:	24 8	24 8	1929 879 2025	2039 8	2154 906 2256	2274 9	2399 93	2529 947	64 8	Эe.
18/23		0.4 [.10]	N N	21 11	34 11	47 12	59 12	72 13	85 14	98 15	812 16	25 17	39 18	852 16	e6 2c	80 21	894 22	908 23	22 25	36 26	il plo
Model RKHL-D120 Voltage 208/230, 460 — 3 Phase 60 Hz			RPM W RPM W RPM W	691 1030 721 1101 752 1172 781 1244	1016 704 1088 734	717 1151 747	669 1065 699 1142 730 1219 759 1297 788 1376	682 1133 713 1212 743 1292 772	2 02	52 7	40 8	33 8	30 8	33 8	41 8	53 8		2293 9	20 9	23 9	ht of t
Volt:		0.1[.02] 0.2[.05] 0.3[.07]	N N	91 10	04 10	17 11	30 12	43 12	26 13	70 17	83 15	97 16	11 17	25 18	39 16	53 20	58 21	882 22	97 24	11 25	ve rig
20		2]	-)9 —	16 70	1076 7	42 73	12 7	87 78	2 89	53 78	43 79	38 8.	38 8%	43 83	53 89	89 80	2188 8	13 89	42 9	M-Dri
드		.2 [.0	RPM W		673 10	686 10	39 11	13 12	27 12	41 13	55 14	39 15	33 16	37 17	12 18	26 19	41 20	856 21	70 23	36 24	line,
i R		2] 0		<u>'</u> 	9 —	39 —	9 9	33 7-	ZZ 90:	83 2	32 99	54 76	46 78	44 79	.46 8-	54 82	78 99	83 85	.06 87	33 88	f bold
Mod		1.0	RPM W	<u>'</u> 	<u> </u>	<u>'</u> 	39 10	32 11	37 12	11 12	25 13	10 14	54 15	39 16	34 17	38 18	13 19	29 20	14 22	59 23	left o
		د	눒					99] 68	46] 65	93] 71	40] 72	88] 74	35] 75	82] 76	29] 78	76] 75	23] 81	71] 82	18] 84	65] 8£	Drive
2	¥ .	CEM [1 /c]		3200 [1510]	300 [1557	400 [1604]	500 [1652]	3600 [1699]	JO [17 ₄	3800 [1793] 711 1283 741 1368 770 1452 798 1538 826 1625	3900 [1840] 725 1366 755 1453 783 1540	30 [18≀	4100 [1935] 754 1546 783 1638 811 1730 839 1824 865 1918	4200 [1982] 769 1644 797 1738 825 1833	4300 [2029] 784 1746 812 1843 839 1941 866	00 [20]	500 [2123] 813 1966 841 2068 868 2171	1600 [2171] 829 2083	4700 [2218] 844 2206 870 2313 897 2420 922	4800 [2265] 859 2333 886 2442 911 2553 936	NOTE: L-Drive left of bold line, M-Drive right of bold line.
		5	5	320	330	340	320	390	370	380	390	40C	410	420	430	440	450	460	470	48C	9

				9	902
				2	096
	7.1]	T	4	4	1014
Σ	3.0 [2237.1]	BK65H	1VP-44	3	1068
				2	1117
				-	1160
				9	299
				5	902
	191.4]	ВК90Н	1VP-44	4	747
_	2.0 [1491.4]	BKS	1VP	3	785
				2	822
				-	857
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

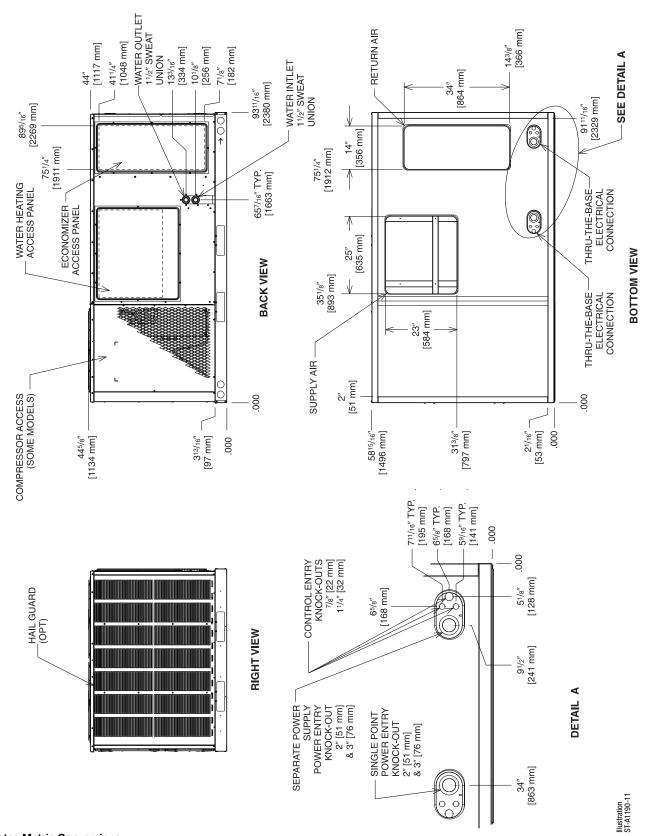
NOTES:

Factory sheave settings are shown in bold type.
 Do not set motor sheave below minimum or maximum turns open shown.
 Be-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOV Total MBH 0.98 0.99	AIRFLOW CORRECTION FACTORS* MBH Sensible MBH Pow 0.93 0.097 0.00	CTORS* Power kW 0.99 0.99	Wet Coil 0.06 [.02] 0.07 [.02]	Downflow 0.00 [.00] 0.00 [.00]	Downflow Economizer RA Damper Open 0.09 [.02]	Horizontal Economizer RA Damper Open Resistance — [0.05 [:01]	COMPONENT AIRFLOW RESISTANCE Concentric Grill Concentric Grill RXRN-FA65 or RXRN-FA65 or RXRN-FA75 & Transition RXMC-CD04 Resistance — Inches of Water [kPa] 0.05 [.01] 0.37 [0.9]	Concentric Grill RXRN-AA61 or RXRN-AA71 & Transition RXMC-CE05	Concentric Grill RXRN-AA66 or RXRN-AA76 & Transition RXMC-CF06
	1.01	1.00	0.08 [.02]	0.00 [.00]	0.11 [.03]	0.06 [.01]	ı	0.16 [.04]	I
	1.05	1.01	0.08 [.02]	0.00 [.00]	0.12 [.03]	0.07 [.02]	ı	0.19 [.05]	I
	1.09	1.01	0.09 [.02]	0.00 [.00]	0.13 [.03]	0.07 [.02]	ı	0.21 [.05]	I
	1.13	1.02	0.09 [.02]	0.00 [.00]	0.14 [.03]	0.08 [.02]	ı	0.24 [.06]	I
	1.17	1.02	0.10 [.02]	0.00 [.00]	0.15 [.04]	0.08 [.02]	ı	0.27 [.07]	I
	1.22	1.03	0.10 [.02]	0.00 [.00]	0.16 [.04]	0.09 [.02]	1	1	0.30 [.07]
	1.26	1.04	0.11 [.03]	0.00 [.00]	0.17 [.04]	0.10 [.02]	1	I	0.32 [.08]

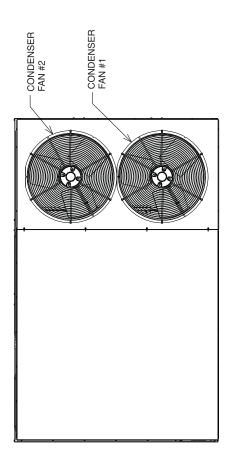
*Multiply correction factor times gross performance data — resulting sensible capacity cannot exceed total capacity,

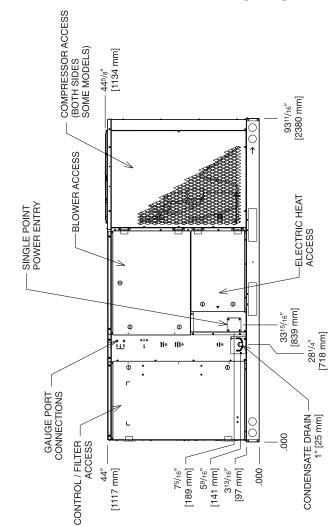
			ELECT	RICAL DAT	A – RLHL S	ERIES			
		C120CL	C120CM	C120DL	C120DM	D120CL	D120CM	D120DL	D120DM
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	187-253	414-506	414-506
_	Volts	208/230	208/230	460	460	208/230	208/230	460	460
atio	Phase	3	3	3	3	3	3	3	3
E	Hz	60	60	60	60	60	60	60	60
Ī	Minimum Circuit Ampacity	61	66	35	38	52	57	25	28
Unit Information	Minimum Overcurrent Protection Device Size	60	70	35	35	60	70	30	30
	Maximum Overcurrent Protection Device Size	90	100	50	50	60	70	30	30
	No.	1	1	1	1	2	2	2	2
	Volts	200/240	200/240	480	480	200/240	200/240	480	480
=	Phase	3	3	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450	3450	3450
] S	HP, Compressor 1	10	10	10	10	4	4	4	4
Compressor Motor	Amps (RLA), Comp. 1	37.1	37.1	20.9	20.9	15.9	15.9	7.1	7.1
Ē	Amps (LRA), Comp. 1	225	225	114	114	110	110	52	52
5	HP, Compressor 2					4	4	4	4
	Amps (RLA), Comp. 2					16.6	16.6	7.5	7.5
	Amps (LRA), Comp. 2					110	110	52	52
_	No.	2	2	2	2	2	2	2	2
Condenser Motor	Volts	208/230	208/230	460	460	208/230	208/230	460	460
e e	Phase	1	1	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
l e	Amps (FLA, each)	2.4	2.4	1.4	1.4	2.4	2.4	1.4	1.4
ြိ	Amps (LRA, each)	4.7	4.7	2.4	2.4	4.7	4.7	2.4	2.4
	No.	1	1	1	1	1	1	1	1
Evaporator Fan	Volts	208/230	208/230	460	460	208/230	208/230	460	460
草	Phase	3	3	3	3	3	3	3	3
ora	HP	2	3	2	3	2	3	2	3
Eval	Amps (FLA, each)	8	13	4	7	8	13	4	7
-	Amps (LRA, each)	56	74.5	28	38.1	56	74.5	28	38.1
	No.	1	1	1	1	1	1	1	1
윤	Volts	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
Water Pump	Phase	1	1	1	1	1	1	1	1
ţe	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
×	Amps (FLA, each)	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
	Amps (LRA, each)	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1

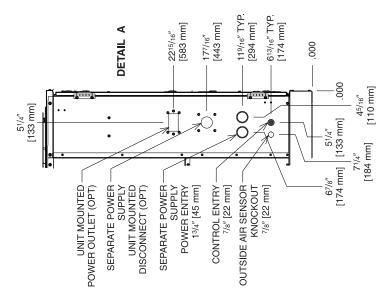

			208/240	208/240 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION	ASE, 60 HZ, AU)	XILIARY ELECTR	IC HEATER KIT	S CHARACTER	ISTICS AND APP	LICATION			
			Single Power S	Single Power Supply for Both Unit and Heater Kit	it and Heater Ki	1			Sep	Separate Power Supply for Both Unit and Heater Kit	ply for Both Unit	and Heater Ki	ţ
			Heater Kit			A	Air Conditioner		Heater Kit	ır Kit	A	Air Conditioner	
Model	RXJJ-	No. of	Rated	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device	Over Current Protective Device Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	urrent Jevice Size
RLHL-	Nominal KW	Steps	@ 208/240V	@ 208/240V	@ 208/240V	@ 208/240V	Min./Max 208V	Min./Max. 240V	208/240V	208/240V	208/240V	Min./Max. 208V	Min./Max. 240V
	No Heat				1	61/61	06/08	06/08	1		61/61	06/08	06/08
	00100	_	7.2/9.6	24.56/32.75	20/23.1	61/61	06/08	06/08	25/29	25/30	61/61	80/90	06/08
	00150	-	10.8/14.4	36.84/49.13	30/34.6	61/61	06/08	06/08	38/44	40/45	61/61	06/08	06/08
C120CL	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	63/70	06/08	06/08	20/28	20/60	61/61	80/90	06/08
	20822	-	21.6/28.8	73.69/98.25	60/69.3	88/88	06/06	100/100	78/57	06/08	61/61	06/08	06/08
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	113/128	125/125	150/150	101/116	110/125	61/61	06/08	06/08
	CC50C	1	36.1/48	123.16/163.75	100.1/115.5	138/157	150/150	175/175	126/145	150/150	61/61	80/90	80/90
	No Heat	ı	I	I	ı	52/52	09/09	09/09	I	I	52/52	09/09	09/09
	00100	-	7.2/9.6	24.56/32.75	20/23.1	52/52	09/09	09/09	25/29	25/30	52/52	09/09	09/09
	00150	-	10.8/14.4	36.84/49.13	30/34.6	52/56	09/09	09/09	38/44	40/45	52/52	09/09	09/09
D120CL	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	63/70	02/02	02/02	20/28	20/60	52/52	09/09	09/09
	20822	-	21.6/28.8	73.69/98.25	60/69.3	88/99	06/06	100/100	78/57	06/08	52/52	09/09	09/09
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	113/128	125/125	150/150	101/116	110/125	52/52	09/09	09/09
	00200	-	36.1/48	123.16/163.75	100.1/115.5	138/157	150/150	175/175	126/145	150/150	52/52	09/09	09/09
	No Heat	ı	I	I	ı	99/99	80/100	80/100	I	I	99/99	80/100	80/100
	00100	-	7.2/9.6	24.56/32.75	20/23.1	99/99	80/100	80/100	25/29	25/30	99/99	80/100	80/100
	00150	-	10.8/14.4	36.84/49.13	30/34.6	99/99	80/100	80/100	38/44	40/45	99/99	80/100	80/100
C120CM	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	22/69	80/100	80/100	20/28	20/60	99/99	80/100	80/100
	20822	-	21.6/28.8	73.69/98.25	60/69.3	94/106	100/100	110/110	78/57	06/08	99/99	80/100	80/100
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	119/134	125/125	150/150	101/116	110/125	99/99	80/100	80/100
	CC20C	1	36.1/48	123.16/163.75	100.1/115.5	144/163	150/150	175/175	126/145	150/150	99/99	80/100	80/100
	No Heat	ı	I	I	I	22/22	02/02	02/02	I	1	22/22	02/02	70/70
	00100	-	7.2/9.6	24.56/32.75	20/23.1	22/22	02/02	02/02	25/29	25/30	22/22	02/02	70/70
	00150	-	10.8/14.4	36.84/49.13	30/34.6	22//62	02/02	02/02	38/44	40/45	22/22	02/02	70/70
D120CM	CC20C	-	14.4/19.2	49.13/65.5	40/46.2	22/69	02/02	08/08	20/28	20/60	22/22	02/02	70/70
	00:00	-	21.6/28.8	73.69/98.25	60/69.3	94/106	100/100	110/110	78/57	06/08	22/22	20/20	02/02
	CC40C	-	28.8/38.4	98.25/131	80.1/92.4	119/134	125/125	150/150	101/116	110/125	57/57	70/70	70/70
	CC20C	-	36.1/48	123.16/163.75	100.1/115.5	144/163	150/150	175/175	126/145	150/150	57/57	70/70	70/70

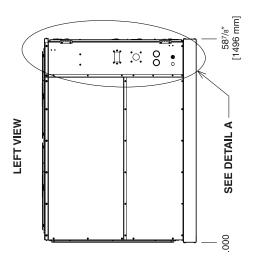
*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.

		480 V	400 VOLI, INNEE TRASE, OU NZ, AUAILIANT ELEUINIO NEAIEN NIIS ONARAUIENIUS AND APPLICATION	3E, UU 112, AUAI	LIANI ELEVINIO	ווייין איי		יונס שונים שונים	ייייייייייייייייייייייייייייייייייייייי			
		Single Power S	Single Power Supply for Both Unit	nit and Heater Kit	<u></u>			Sei	Separate Power Supply for Both Unit and Heater Kit	oply for Both Uni	t and Heater K	.
		Heater Kit			Ā	Air Conditioner		Heat	Heater Kit	⋖	Air Conditioner	
	No. of	Rated	Heater	Heater	Unit Min. Ckt.	Over C Protective L	Over Current Protective Device Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device	Over Current Protective Device Size
,	Steps	@ 480V	@ 480V	480V	@ 480V	Min./Max 480V	Min./Max. 480V	480V	9126 480V	480V	Min./Max. 480V	Min./Max. 480V
					35	40/20	1	1	1	35	40/20	1
	-	9.6	32.75	11.5	35	40/20	l	15	15	35	40/20	I
	-	14.4	49.13	17.3	35	40/20	l	22	25	35	40/20	I
	-	19.2	65.5	23.1	37	40/20	I	29	30	35	40/20	I
	-	28.8	98.25	34.6	51	09/09	l	44	45	32	40/20	I
	-	38.4	131	46.2	65	02/02	1	58	09	32	40/20	1
	-	48	163.75	57.7	80	80/80	1	73	80	35	40/20	1
		I	I	ı	25	30/30	I	I	I	25	30/30	I
	-	9.6	32.75	11.5	25	30/30	l	15	15	25	30/30	l
	-	14.4	49.13	17.3	59	30/30	1	22	25	22	30/30	1
	-	19.2	65.5	23.1	37	40/40	I	29	30	22	30/30	1
	-	28.8	98.25	34.6	51	09/09	1	44	45	22	30/30	1
	-	38.4	131	46.2	65	02/02	I	58	09	22	30/30	I
	-	48	163.75	57.7	80	80/80	1	73	80	25	30/30	I
		1	I		38	45/50	I	I	1	38	45/50	I
	-	9.6	32.75	11.5	38	45/50	1	15	15	38	45/50	1
	-	14.4	49.13	17.3	38	45/50	I	22	25	38	45/50	1
	-	19.2	65.5	23.1	40	45/50	1	29	30	38	45/50	I
	-	28.8	98.25	34.6	22	09/09	1	44	45	38	45/50	I
	-	38.4	131	46.2	69	02/02	1	28	09	38	45/50	I
	1	48	163.75	57.7	84	06/06	1	73	80	38	45/50	1
	1	I		ı	28	30/30	1	I	I	28	30/30	I
	-	9.6	32.75	11.5	78	35/35	1	15	15	28	30/30	I
	-	14.4	49.13	17.3	33	35/35	1	22	25	28	30/30	I
	-	19.2	65.5	23.1	40	40/40	1	29	30	28	30/30	I
	-	28.8	98.25	34.6	22	09/09	1	44	45	28	30/30	I
	-	38.4	131	46.2	69	70/70	I	28	09	28	30/30	1
	-	48	163.75	57.7	84	06/06	I	73	80	28	30/30	-

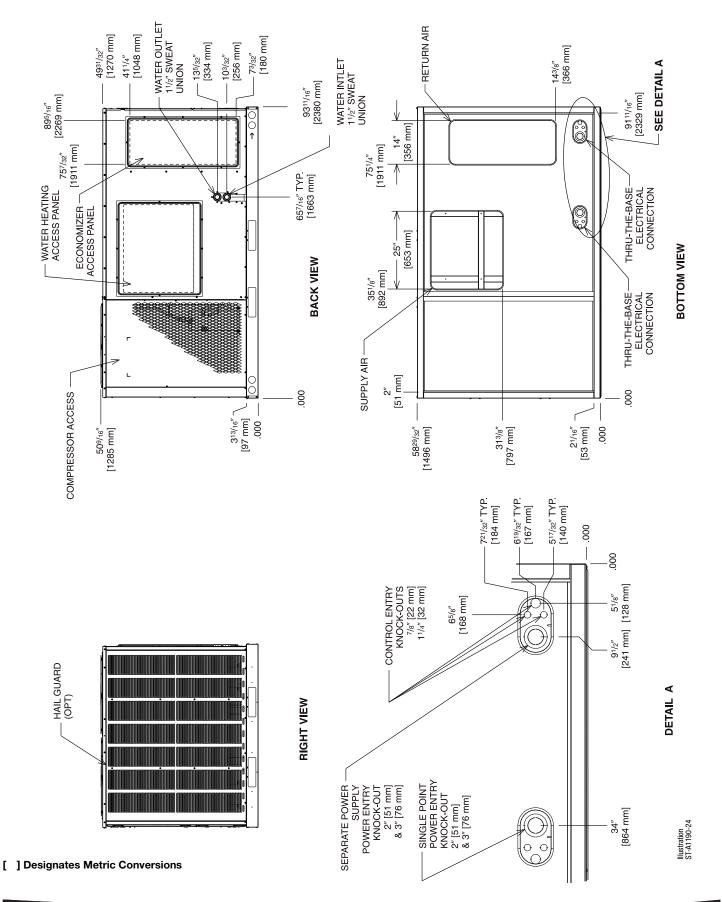

*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.


PACKAGE AIR CONDITIONER DOWNFLOW ONLY

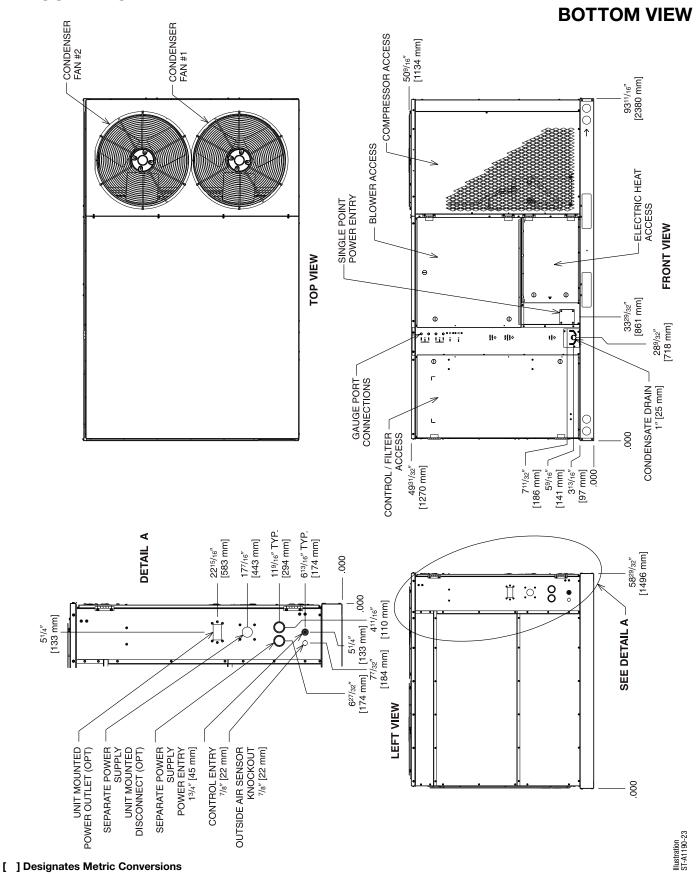



PACKAGE AIR CONDITIONER DOWNFLOW ONLY

BOTTOM VIEW



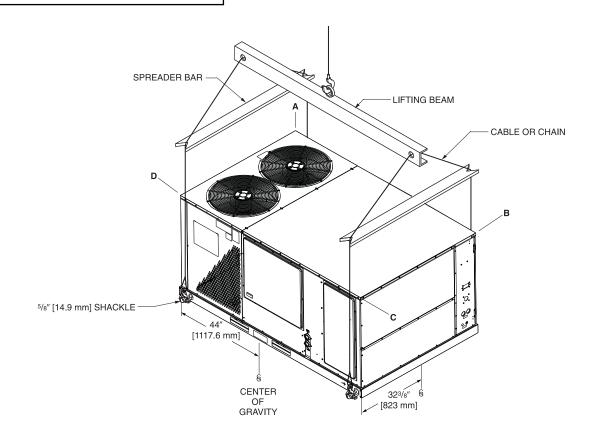
[] Designates Metric Conversions

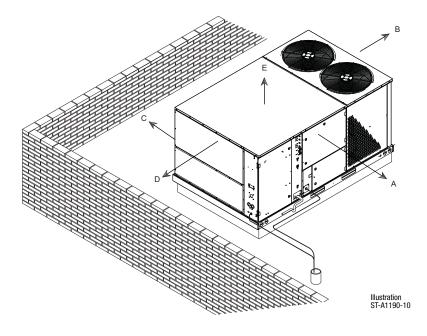

FRONT VIEW

TOP VIEW

PACKAGE AIR CONDITIONER DOWNFLOW ONLY

PACKAGE AIR CONDITIONER




LINITE

WEIGHTS

INCLUDE OPTIONS FROM ACCESSORY PAGE TO OBTAIN TOTAL UNIT WEIGHT!

Capacity Tons [kW]	Corner	Weights	by Perc	entage
	Α	В	С	D
10 [35.1]	29%	26%	21%	24%

CLEARANCES

The following minimum clearances must be observed for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location
48 [1219]	A - Front
18 [457]	B - Condenser Coil
18 [457]	C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer. 48" [1	219 mm] With Economizer

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Weight Available?
Thermostats	See Thermostat Speci	fication Sheet for Detai	ils (T11-001)	No
	RXJJ-CC10 (C,D,Y)	46 [20.9]	36 [16.3]	Yes
	RXJJ-CC15 (C,D,Y)	46 [20.9]	36 [16.3]	Yes
Florisation	RXJJ-CC20 (C,D,Y)	46 [20.9]	36 [16.3]	Yes
Electric Heaters	RXJJ-CC30 (C,D,Y)	47 [21.3]	37 [16.8]	Yes
	RXJJ-CC40 (C,D,Y)	49 [22.2]	39 [17.7]	Yes
	RXJJ-CC50 (C,D,Y)	51 [23.1]	41 [18.6]	Yes
Economizer w/Single Enthalpy (Downflow)	AXRD-PJCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector (Downflow)	AXRD-SJCM3	91 [41.3]	82 [37.2]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	1 [.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust	RXRX-BFF02 (C,D,Y)	43 [19.5]	38 [17.2]	No
Manual Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDA1	26 [11.8]	21 [9.5]	No
Manual Fresh Air Damper (Left Panel Mounted)	AXRF-KDA1	38 [17.2]	31 [14.1]	No
Motor Kit for AXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.9]	27 [12.2]	No
Modulating Motor Kit w/position feedback for AXRF-KDA1	RXRX-AW04	38 [17.2]	30 [13.6]	No
Motorized Fresh Air Damper (Horizontal Return Mounted)	AXRF-JDB1	43 [19.5]	38 [17.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Porto halo to	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ①	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 @	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [1.0]	Yes
Outdoor Coil Louver Kit	AXRX-AAD02A	29 [11.3]	26 [11.8]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [.7]	Yes
Comfort Alert (1 Per Compressor)	RXRX-AZ01	3 [1.5]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Commercial Storage Tank	ST120	300 [136.1]	1240 [562.5]	No
Flush valve kit for H₂AC Rooftop Unit	RXMV-AG	12 [5.4]	11 [5.0]	No
Emergency Electrically Operated Water Shutoff Valve	RXMV-AH	12 [5.4]	11 [5.0]	No
Water Storage Tank Kit	RXMZ-A120A	32 [14.5]	30 [13.6]	No

NOTES: ① Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

 $[\]ensuremath{\mathfrak{D}}$ Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

THERMOSTATS

200-Series *
Programmable

300-Series *
Deluxe
Programmable
400-Series *
Special Applications/
Programmable

500-Series * Communicating/ Programmable

Brand		Descripter (3 Characters)	Series (3 Characters)	System (2 Characters)	Type (2 Characters)
RHC	-	TST	213	UN	MS
RHC=Rheem		TST=Thermostat	200=Programmable 300=Deluxe Programmable 400=Special Applications/ Programmable 500=Communicating/ Programmable	GE=Gas/Electric UN=Universal (AC/HP/GE) MD=Modulating Furnace DF=Dual Fuel CM=Communicating	SS=Single-Stage MS=Multi-Stage

^{*} Photos are representative. Actual models may vary.

For detailed thermostat match-up information, see specification sheet form number T11-001.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDSField Installed

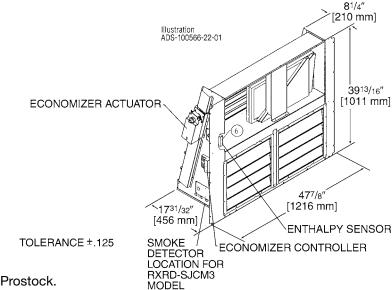
BACnet® COMMUNICATION CARD RXRX-AY01

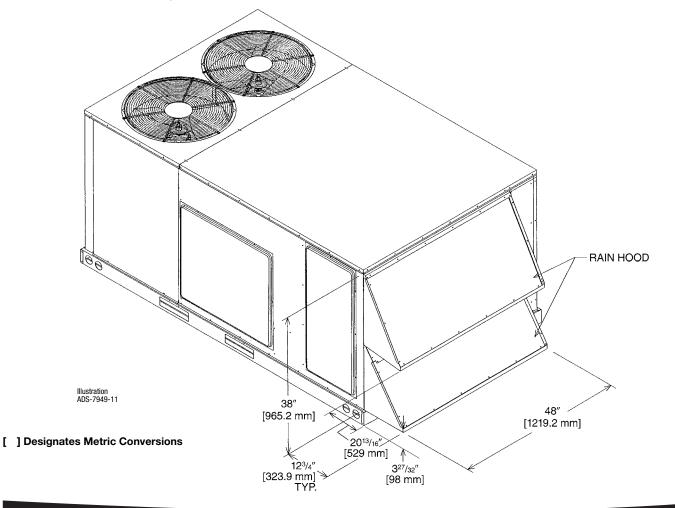
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION

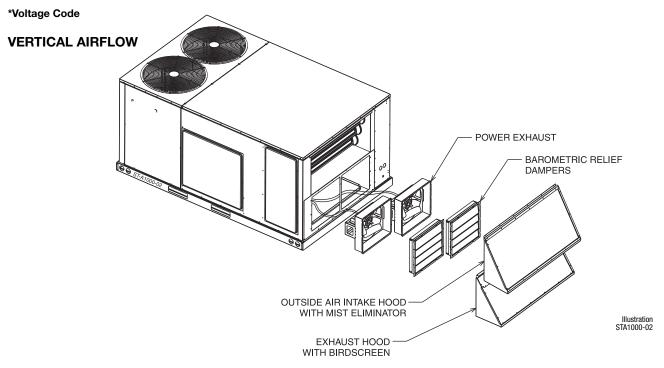

Use to Select Field Factory Installed Options Only


AXRD-PJCM3-Single Enthalpy (Outdoor) and AXRD-SJCM3 Single Enthalpy with Smoke Detector

RXRX-AV03—Dual Enthalpy Upgrade Kit

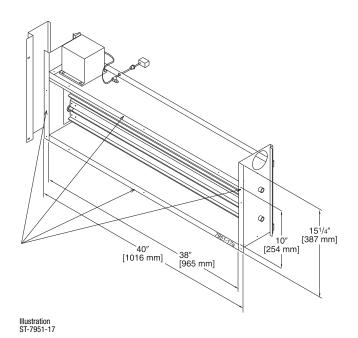
RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin **Electrical Connections**
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



POWER EXHAUST KIT FOR AXRD-PJCM3, AXRD-SJCM3 ECONOMIZERS

RXRX-BFF02 (C or D*)

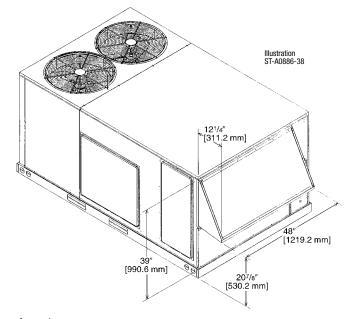


Model No.	No. Volts		Phase HP	Low Speed		High Speed ①		FLA	LRA	
Model No.	of Fans	VUIIS	FIIASE	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BFF02C	2	208-230	1	0.33	2200 [1038]	1518	2500 [1179]	1670	1.48	3.6
RXRX-BFF02D	2	460	1	0.33	2200 [1038]	1518	2500 [1179]	1670	0.75	1.8

NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for AXRF-KDA1)

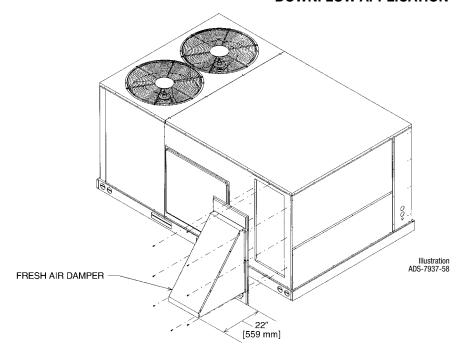

AXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

[] Designates Metric Conversions

MOTORIZED DAMPER KIT RXRX-AW04 (Modulating Motor Kit with position feedback for AXRF-KDA1)

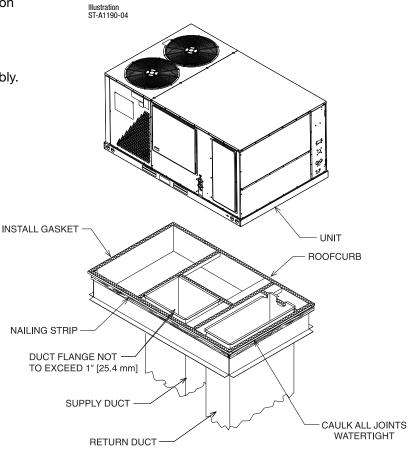
- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen



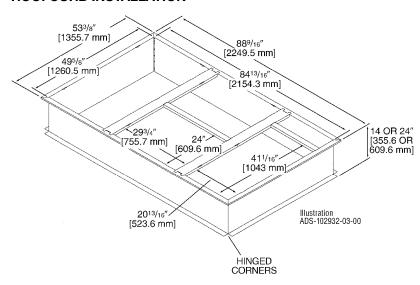
FRESH AIR DAMPER (Cont.)

AXRF-JDA1 (Manual) AXRF-JDB1 (Motorized)

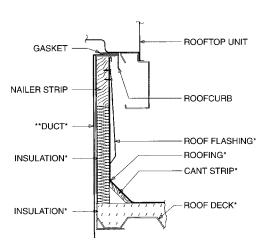
DOWNFLOW APPLICATION



ROOFCURBS (Full Perimeter)

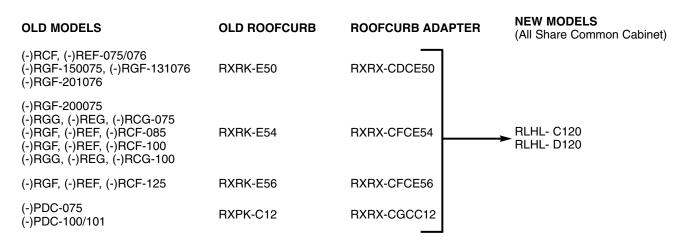

- Rheem's roofcurb design can be utilized on all 10 ton [35.1 kW] RLHL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.

Roofcurb Model	Height of Curb		
RXKG-CAE14	14" [356 mm]		
RXKG-CAE24	24" [610 mm]		


TYPICAL INSTALLATION

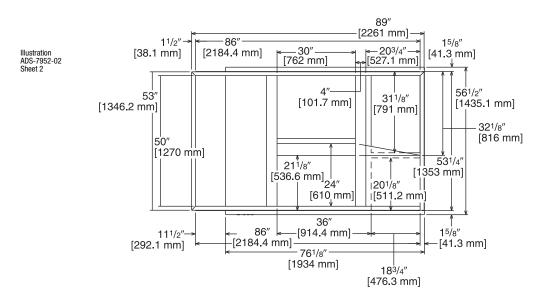
ROOFCURB INSTALLATION

[] Designates Metric Conversions

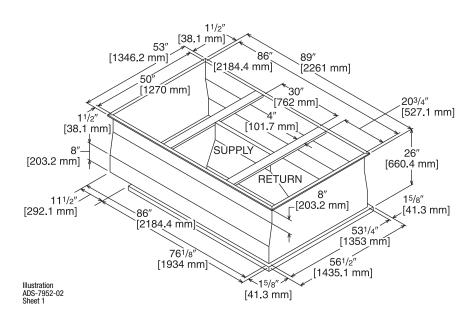

*BY CONTRACTOR

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

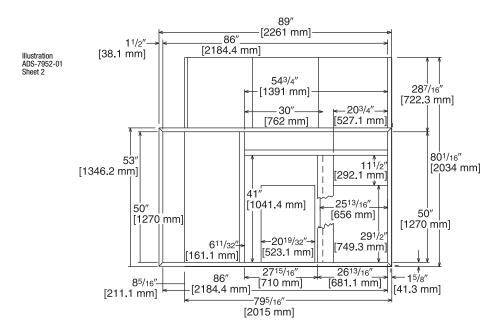
Illustration ST-A0743-02

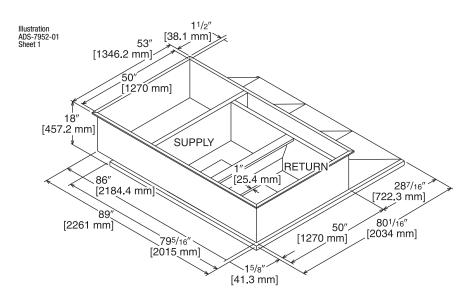


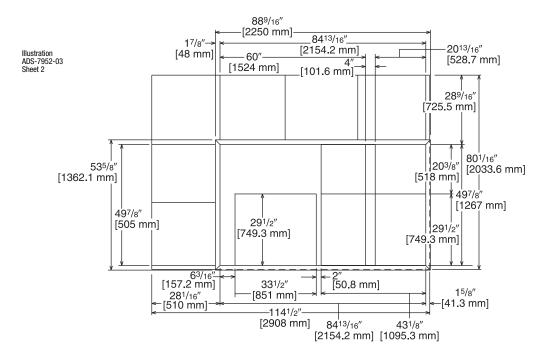
ROOFCURB ADAPTERS

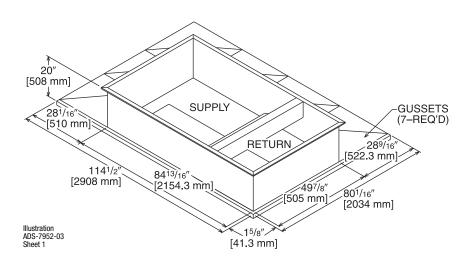


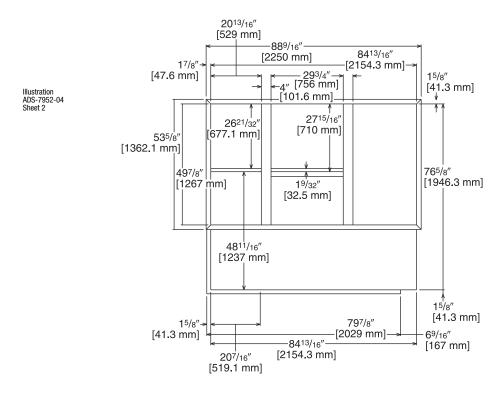
NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. RLHL- C120 or RLHL- D120 fits on the same curb as the RLKB- A090, A102, A120, A150, A181, RLMB- A090, A102, A120, A150, RLNB- A090, A102, A120

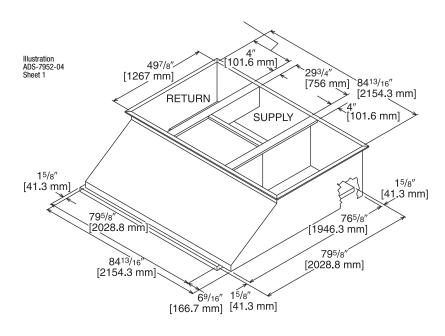

RXRX-CDCE50

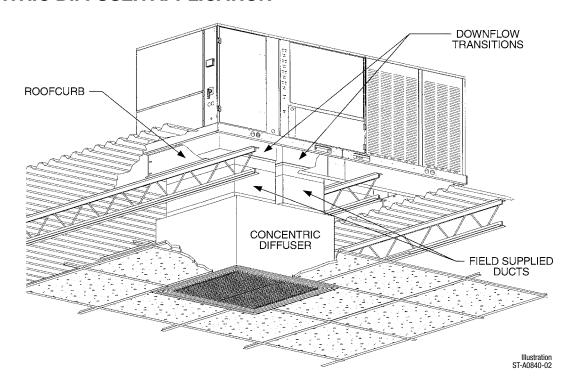

TOP VIEW


RXRX-CFCE54

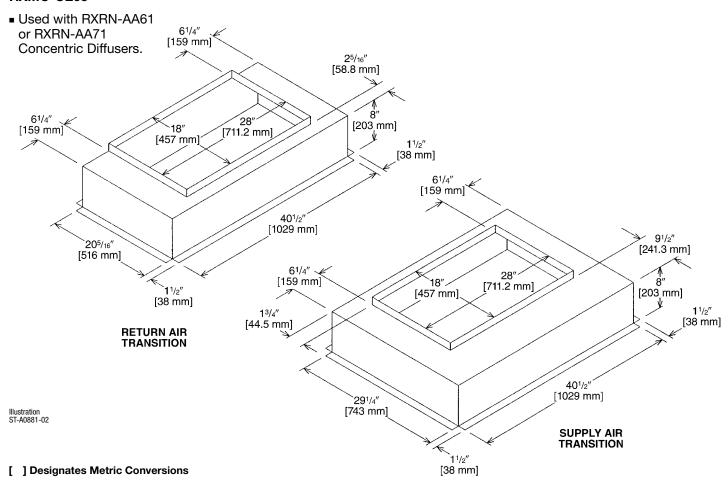

TOP VIEW


RXRX-CFCE56


TOP VIEW


RXRX-CGCC12

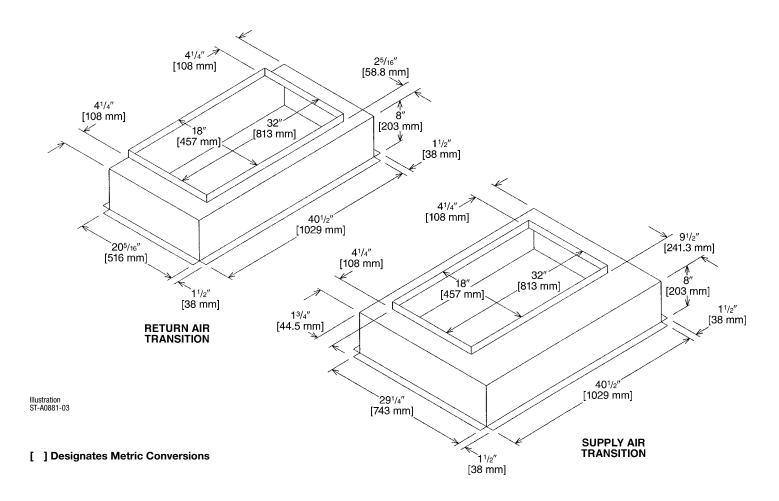
TOP VIEW



CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

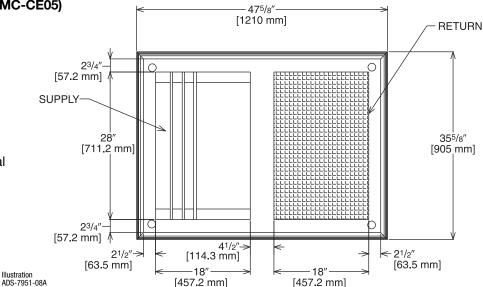
RXMC-CE05

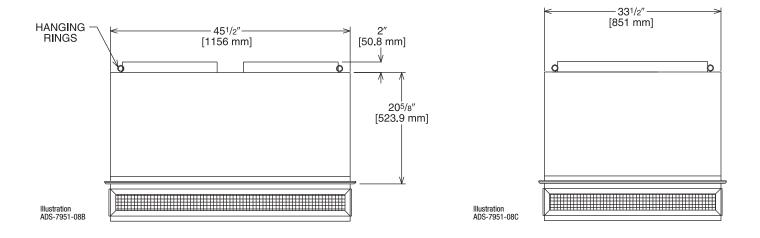


DOWNFLOW TRANSITION DRAWINGS

RXMC-CF06

 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.




CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (10 Ton [35.1 kW] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

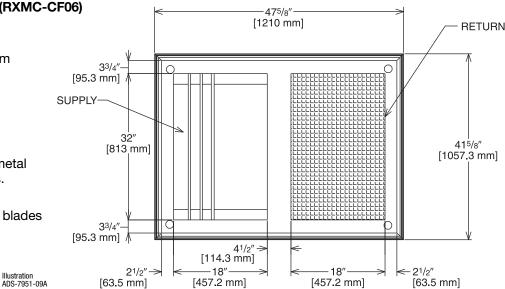
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

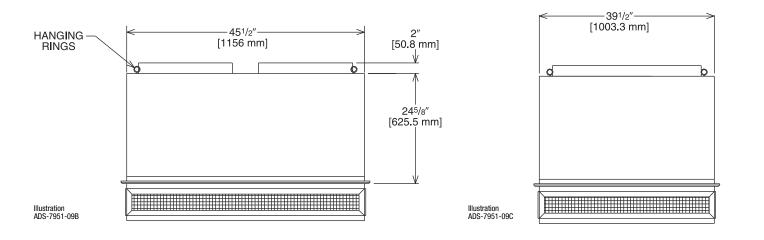
ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ^④ (dbA)
RXRN-AA61	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attention must be provided to reduce sound output from the unit.




CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

RXRN-AA66 (10 Ton [35.1 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts

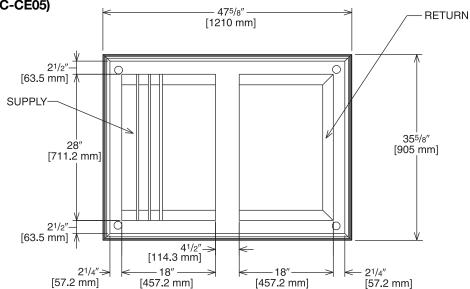
- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

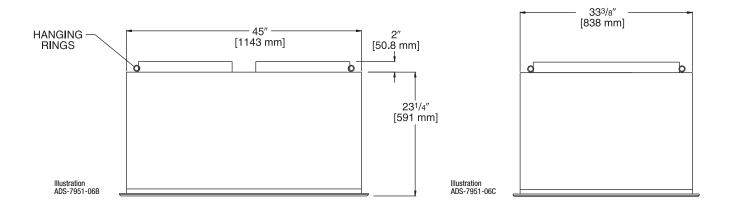
ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AA66	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attention must be provided to reduce sound output from the unit.


CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]


RXRN-AA71 (10 Ton [35.1] Models)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

Illustration ADS-7951-06A

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
RXRN-AA71	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

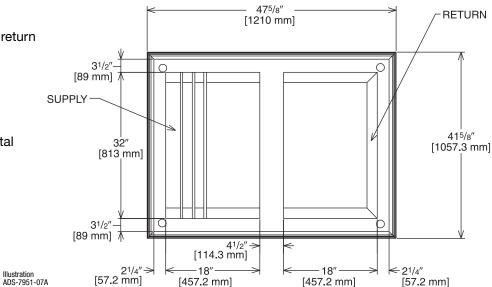
NOTES: ① All data is based on the air diffusion council guidelines.

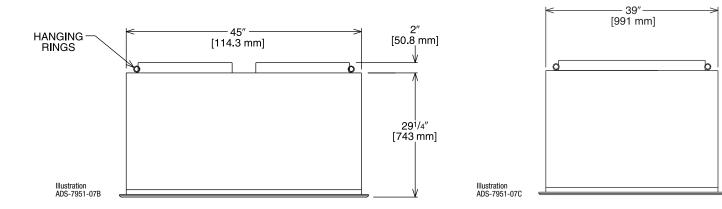
- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- 4 Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attention must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]

RXRN-AA76 (10 Ton [35.1 kW] Models)

For Use With Downflow Transition (RXMC-CF06) and 18" x 32" [457.2 x 813 mm]
Supply and Return Ducts


 All aluminum diffuser with aluminum return air eggcrate.


■ Built-in anti-sweat gasket.

Molded fiberglass supports.

■ Built-in hanging supports.

 Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AA76	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attention must be provided to reduce sound output from the unit.

FLUSH VALVE KIT

RXMV-AG

Contains two valves with union and 1-1/2" FPT connections for the H₂AC Rooftop Unit water lines

- Field Installed accessory serves as the H₂AC Rooftop Unit water shut off valves during unit servicing.
- Aids in the periodic flushing required for the refrigerant-to-water heat exchanger contained in the H₂AC Rooftop Unit to remove lime and scale buildup and to prevent degradation of water heating performance.
- Features 3/4" threaded hose connections for draining.

EMERGENCY ELECTRICALLY OPERATED WATER SHUTOFF VALVE

RXMV-AH

Shuts off water supply to the H₂AC Rooftop Unit if a leak is detected by the onboard sensor

- Field Installed accessory provided with 1-1/2" FPT connections.
- Standard Port, Bronze Ball Valve for low water pressure drop.
- 115 VAC motor connects to alarm dry contacts on eSync unit and separate power supply.
- Standard position indicator.
- Manual override standard.
- Mountable in any position.

WATER STORAGE TANK MANIFOLD KIT

RXMZ-A120A

Compact tank-hugging design provides components to connect the H₂AC rooftop unit to the water storage tank and the rest of the potable water heating system

- Field Installed accessory with 1-1/2" sweat connections to the H₂AC unit and 2" sweat connections to the hot water system.
- Reduces plumbing errors that prevent proper operation of the H₂AC unit. Components meet California law AB 1953 low-lead requirements.
- Standard Port, Bronze Ball Shutoff Valves for low water pressure drop.
- Bronze Check Valves prevent loss of H₂AC water pump prime during temporary water pressure loss and prevent water backflow when Emergency Water Shutoff valve is energized.
- Includes Di-electric Nipples and Di-electric Unions to water storage tank for building code compliance.
- Includes ¾" hose bibs to bleed air out of the system after initial installation and to drain system for servicing.
- Includes bronze plugs for unused storage tank connections.

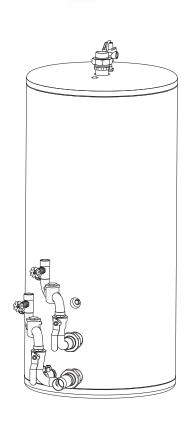


Illustration ADS-104600-01

GUIDE SPECIFICATIONS - RLHL-C120 or RLHL-D120

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

ELECTRIC HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 6 to 12.5 Nominal Tons

Section Description

22 35 36 Domestic Water Brazed-Plate Heat Exchangers

22 35 36.A Domestic Water Brazed-Plate Heat Exchangers

- 1. Unit shall contain a Double Wall, Vented, Brazed-Plate heat exchanger to provide preheating of domestic potable water by using refrigerant waste heat recovery from the packaged air conditioner.
- 2. Heat exchanger shall be mounted in the indoor air section of the packaged air conditioner.
- 3. Unit shall be provided with a stainless steel recirculation pump suitable for potable water.
- 4. Unit shall include controls to switch from air conditioning to water heating mode whenever heat recovery is possible.

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with foil face on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

- 1. Thermostat must
 - a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust, occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers

- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.
- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 4. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally sound R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.

- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
- 3. Unit shall be factory configured for vertical supply & return configurations.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210/240 or 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb density, flexible fiberglass insulation, aluminum foil-faced on the air side.
- 4. Base of unit shall have locations for thru-the-base electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on a minimum of 4 sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" -11 1/2 NPT drain connection, through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - d. Shall be able to be easily removed.
- 7. Top panel:
 - a. Shall be a single piece top panel over indoor section.
- 8. Electrical Connections:
 - a. All unit power wiring shall enter unit cabinet a a single, factory-prepared, continuous raised flange opening in the basepan.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily opened for servicing.
 - b. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners.
 - c. 1/4 fasteners shall be permanently attached.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator coil shall be aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed. All aluminum MicroChannel condensing coil.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. TXV metering system shall prevent mal-distribution of two-phase refrigerant.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. External pressure gauge ports access shall be located in front exterior of cabinet.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- d. Compressors shall be internally protected from high discharge temperature conditions.
- e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- f. Compressor shall be factory mounted on rubber grommets.
- g. Compressor motors shall have internal line break thermal and current overload protection.
- h. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by a sliding filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.

- ے Air
- f. Shall be capable of introducing up to 100% outdoor air.
- g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
- h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
- i. An outdoor single enthalpy sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
- j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
- k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
- I. Dampers shall be completely closed when the unit is in the unoccupied mode.
- m. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
- n. Compressor lockout sensor on the unit controller is factory set at 35°F and is adjustable from 0°F (-18°C) to 50°F (10°C) and resets the cooling lockout at 5°F (+2.7°C) above the set point.
- o. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- p. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- q. Economizer wire harness will have provision for smoke detector.
- 2. Two-Position Motorized Damper
 - a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
 - d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Convenience Outlet:
 - a. Non-Powered convenience outlet.
 - b. Outlet shall be powered from a separate 115-120 Vac power source.
 - c. A transformer shall not be included.
 - d. Outlet shall be factory-installed and internally mounted with easily accessible 115 Vac female receptacle.
 - e. Outlet shall include 15 amp GFI receptacle.
 - f. Outlet shall be accessible from outside the unit.
- 7. Fan/Filter Status Switch:
 - a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
 - b. Status shall be displayed either over communication bus (when used with direct digital controls) or through the controller LCD display inside the unit control box.
- 8. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 9. Roof Curbs (Vertical):
 - a. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 10. High-Static Indoor Fan Motor(s) and Drive(s):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.

11. Outdoor Air Enthalpy Sensor:

a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

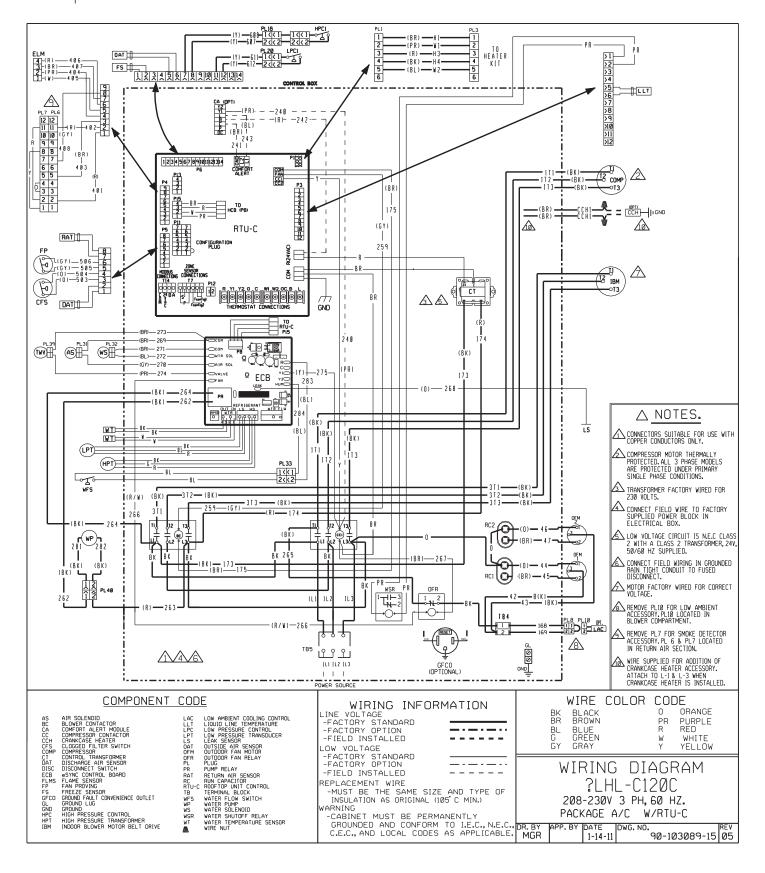
12. Return Air Enthalpy Sensor:

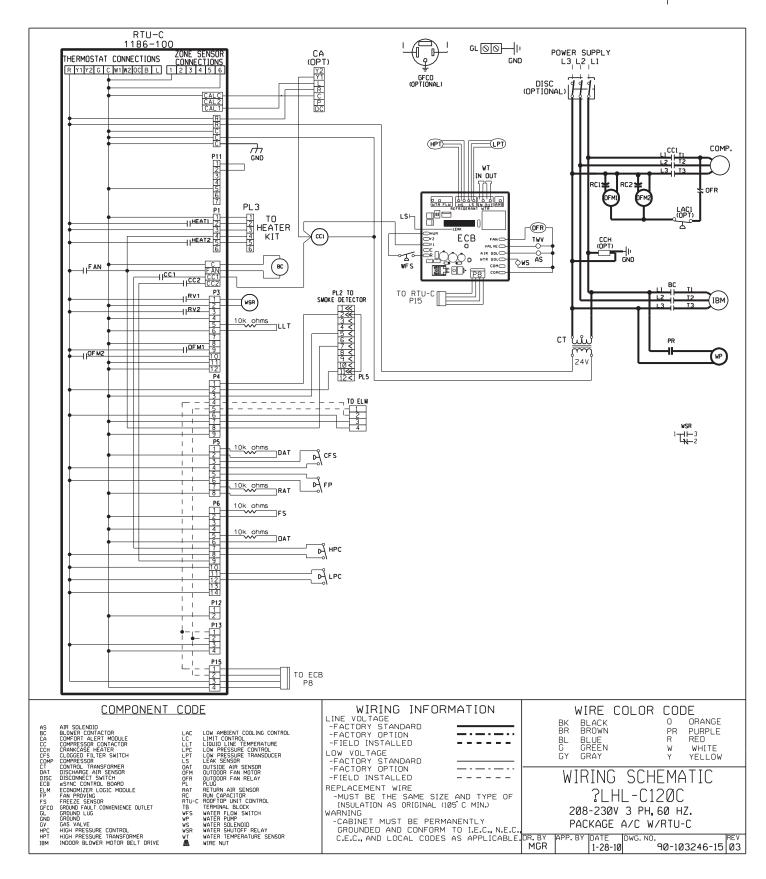
a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

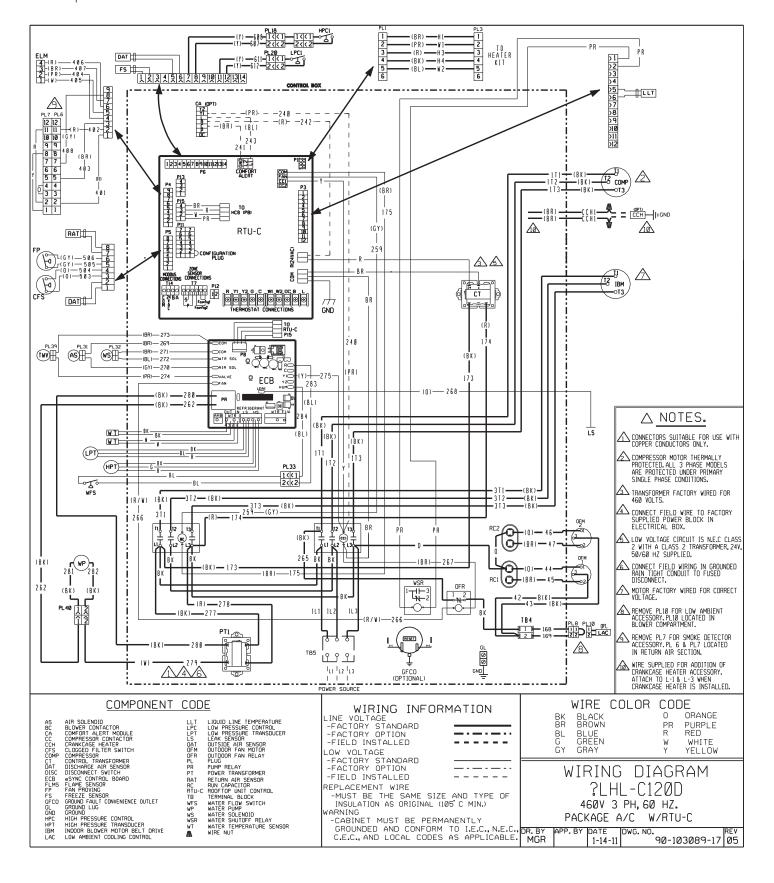
13. Indoor Air Quality (CO2) Sensor:

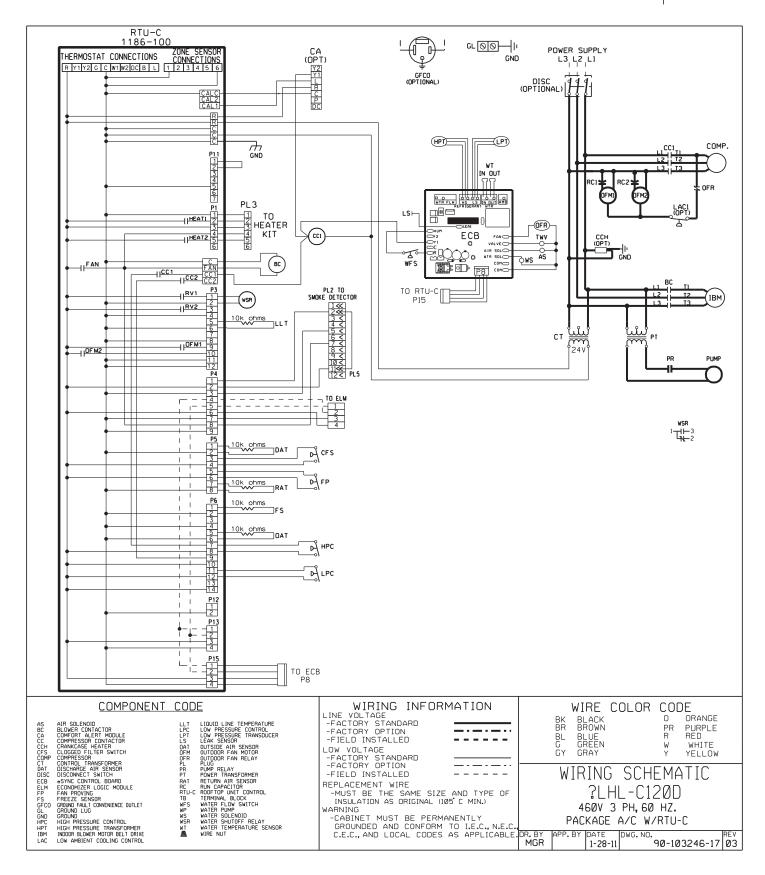
- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in wall mount with LED display. The setpoint shall have adjustment capability.

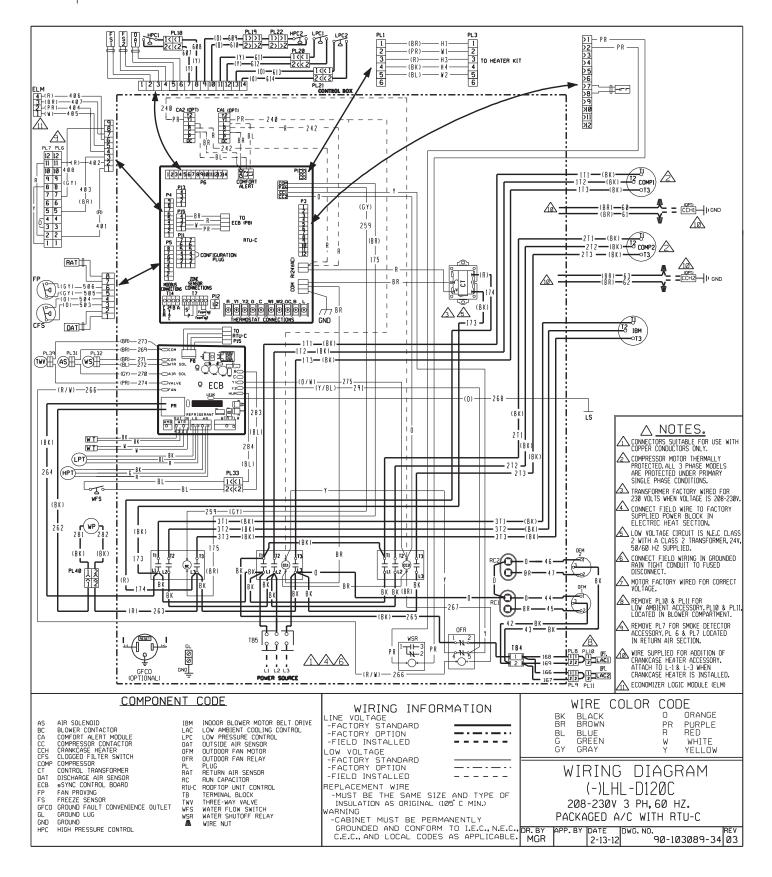
14. Smoke detectors:

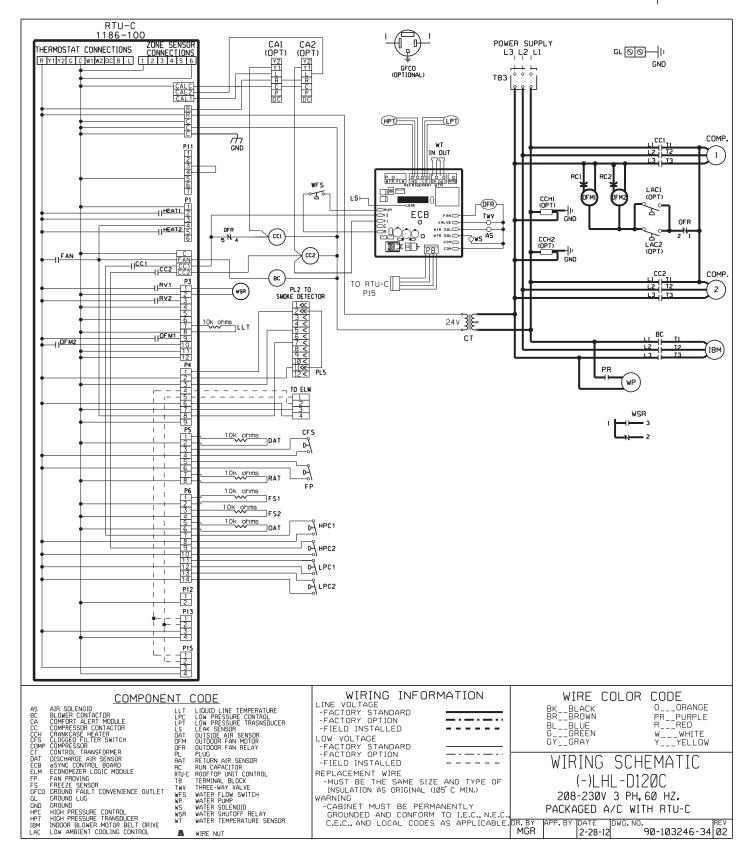

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have a recessed momentary switch for testing and resetting the detector.
- e. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

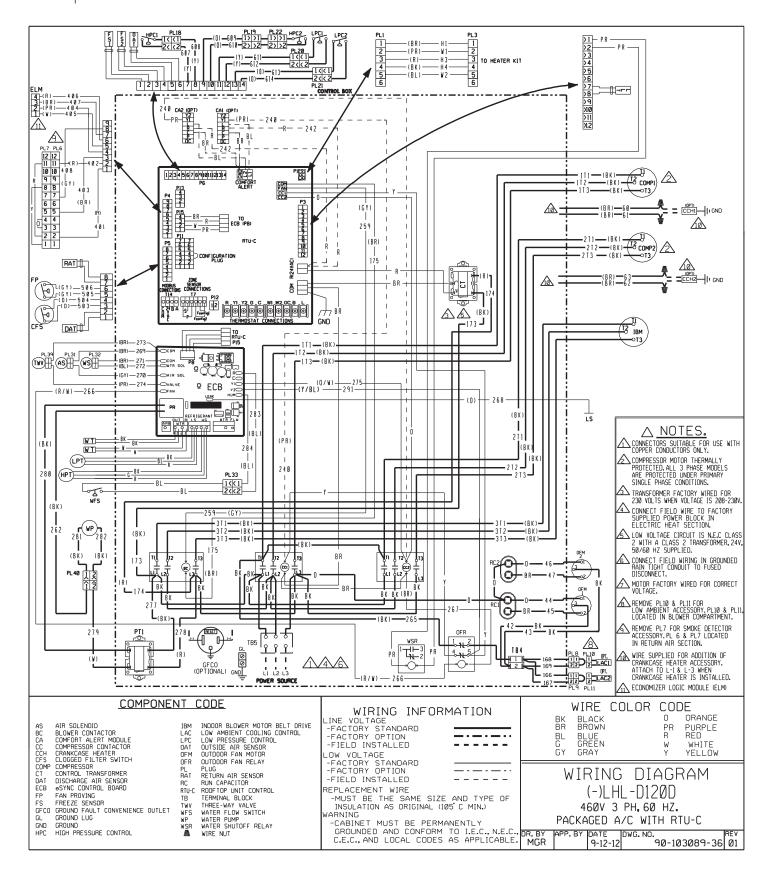

15. Barometric relief

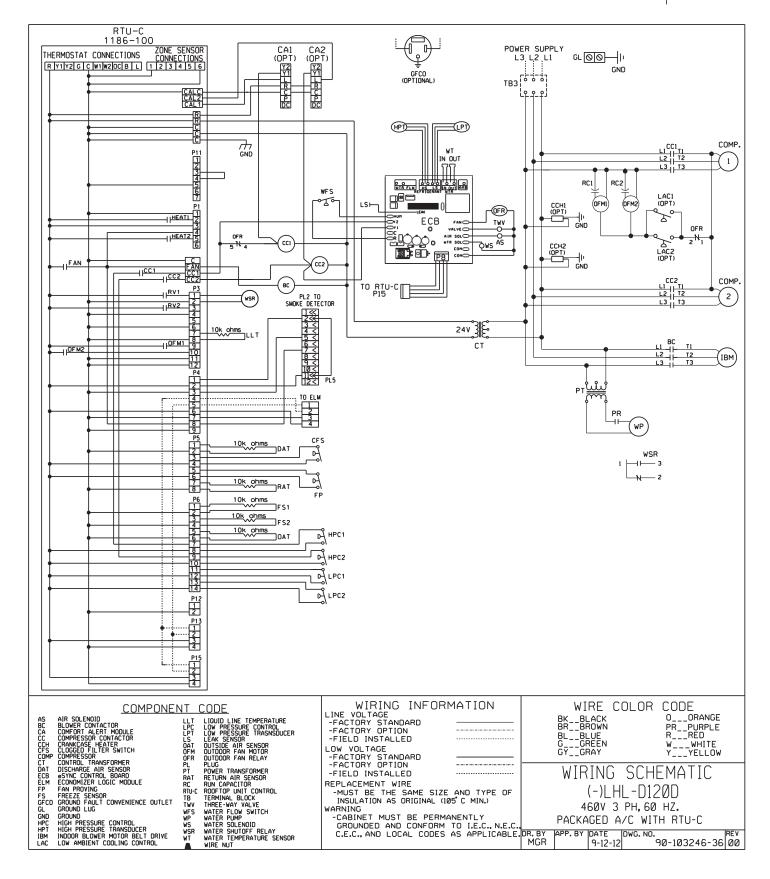

- a. Shall include damper, seals, hardware, and hoods to relieve excess building pressure.
- b. Damper shall gravity-close upon shutdown.


16. Electric Heat:


- a. Heating Section
 - i. Heater element open coil resistance wire, nickel-chrome alloy, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.
 - ii. Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24 v coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.







BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Rheem will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Compressor

3 Phase, Commercial Applications.....Five (5) Years Parts

3 Phase, Commercial ApplicationsOne (1) Year

In keeping with its policy of continuous progress and product improvement, Rheem reserves the right to make changes without notice.

Rheem Heating, Cooling & Water Heating • P.O. Box 17010 Fort Smith, Arkansas 72917 • www.rheem.com Rheem Canada Ltd./Ltée • 125 Edgeware Road, Unit 1 Brampton, Ontario • L6Y 0P5

